Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Pulmonology

  • 349 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 6
  • 7
  • 8
  • …
  • 34
  • 35
  • Next →
Epithelial responses to CFTR modulators are improved by inflammatory cytokines and impaired by anti-inflammatory drugs
Tayyab Rehman, Alejandro A. Pezzulo, Andrew L. Thurman, Rachel L. Zemans, Michael J. Welsh
Tayyab Rehman, Alejandro A. Pezzulo, Andrew L. Thurman, Rachel L. Zemans, Michael J. Welsh
View: Text | PDF

Epithelial responses to CFTR modulators are improved by inflammatory cytokines and impaired by anti-inflammatory drugs

  • Text
  • PDF
Abstract

Cystic fibrosis (CF) is a genetic disorder that disrupts CF transmembrane conductance regulator (CFTR) anion channels and impairs airway host defenses. Airway inflammation is ubiquitous in CF and suppressing it has generally been considered to improve outcomes. However, the role of inflammation in people taking CFTR modulators, small-molecule drugs that restore CFTR function, is not well-understood. We previously showed that inflammation enhances the efficacy of CFTR modulators. To further elucidate this relationship, we treated human ∆F508-CF epithelia with TNFα and IL-17, two inflammatory cytokines that are elevated in CF airways. TNFα+IL-17 enhanced CFTR modulator-evoked anion secretion through mechanisms that raise intracellular Cl– (Na+/K+/2Cl– co-transport) and HCO3– (carbonic anhydrases and Na+/HCO3– co-transport). This enhancement required p38 MAPK signaling. Importantly, CFTR modulators did not affect CF airway surface liquid viscosity under control conditions, but prevented the rise in viscosity in epithelia treated with TNFα+IL-17. Lastly, anti-inflammatory drugs limited CFTR modulator responses in TNFα+IL-17-treated epithelia. These results provide critical insights into mechanisms by which inflammation increases responses to CFTR modulators. They also suggest an equipoise between potential benefits versus limitations of suppressing inflammation in people taking modulators, call into question current treatment approaches, and highlight a need for additional studies.

Authors

Tayyab Rehman, Alejandro A. Pezzulo, Andrew L. Thurman, Rachel L. Zemans, Michael J. Welsh

×

SFTPB in serum extracellular vesicles as a biomarker of progressive pulmonary fibrosis
Takatoshi Enomoto, et al.
Takatoshi Enomoto, et al.
View: Text | PDF

SFTPB in serum extracellular vesicles as a biomarker of progressive pulmonary fibrosis

  • Text
  • PDF
Abstract

Progressive pulmonary fibrosis (PPF), defined as the worsening of various interstitial lung diseases (ILDs), currently lacks useful biomarkers. To identify novel biomarkers for early detection of patients at risk of PPF, we performed a proteomic analysis of serum extracellular vesicles (EVs). Notably, the identified candidate biomarkers were enriched for lung-derived proteins participating in fibrosis-related pathways. Among them, pulmonary surfactant-associated protein B (SFTPB) in serum EVs could predict ILD progression better than the known biomarkers, serum KL-6 and SP-D, and it was identified as an independent prognostic factor from ILD-gender-age-physiology index. Subsequently, the utility of SFTPB for predicting ILD progression was evaluated further in 2 cohorts using serum EVs and serum, respectively, suggesting that SFTPB in serum EVs but not in serum was helpful. Among SFTPB forms, pro-SFTPB levels were increased in both serum EVs and lungs of patients with PPF compared with those of the control. Consistently, in a mouse model, the levels of pro-SFTPB, primarily originating from alveolar epithelial type 2 cells, were increased similarly in serum EVs and lungs, reflecting pro-fibrotic changes in the lungs, as supported by single-cell RNA sequencing. SFTPB, especially its pro-form, in serum EVs could serve as a biomarker for predicting ILD progression.

Authors

Takatoshi Enomoto, Yuya Shirai, Yoshito Takeda, Ryuya Edahiro, Shigeyuki Shichino, Mana Nakayama, Miho Takahashi-Itoh, Yoshimi Noda, Yuichi Adachi, Takahiro Kawasaki, Taro Koba, Yu Futami, Moto Yaga, Yuki Hosono, Hanako Yoshimura, Saori Amiya, Reina Hara, Makoto Yamamoto, Daisuke Nakatsubo, Yasuhiko Suga, Maiko Naito, Kentaro Masuhiro, Haruhiko Hirata, Kota Iwahori, Izumi Nagatomo, Kotaro Miyake, Shohei Koyama, Kiyoharu Fukushima, Takayuki Shiroyama, Yujiro Naito, Shinji Futami, Yayoi Natsume-Kitatani, Satoshi Nojima, Masahiro Yanagawa, Yasushi Shintani, Mari Nogami-Itoh, Kenji Mizuguchi, Jun Adachi, Takeshi Tomonaga, Yoshikazu Inoue, Atsushi Kumanogoh

×

Characteristics and Determinants of Pulmonary Long COVID
Michael John Patton, Donald Benson, Sarah W. Robison, Dhaval Raval, Morgan L. Locy, Kinner Patel, Scott Grumley, Emily B. Levitan, Peter Morris, Matthew Might, Amit Gaggar, Nathaniel Erdmann
Michael John Patton, Donald Benson, Sarah W. Robison, Dhaval Raval, Morgan L. Locy, Kinner Patel, Scott Grumley, Emily B. Levitan, Peter Morris, Matthew Might, Amit Gaggar, Nathaniel Erdmann
View: Text | PDF

Characteristics and Determinants of Pulmonary Long COVID

  • Text
  • PDF
Abstract

BACKGROUND Persistent cough and dyspnea are prominent features of post-acute sequelae of SARS-CoV-2 (also termed ’Long COVID’); however, physiologic measures and clinical features associated with these pulmonary symptoms remain poorly defined. Using longitudinal pulmonary function testing (PFTs) and CT imaging, this study aimed to identify the characteristics and determinants of pulmonary Long COVID. METHODS This single-center retrospective study included 1,097 patients with clinically defined Long COVID characterized by persistent pulmonary symptoms (dyspnea, cough, and chest discomfort) lasting for ≥1 month after resolution of primary COVID infection. RESULTS After exclusion, a total of 929 patients with post-COVID pulmonary symptoms and PFTs were stratified diffusion impairment and restriction as measured by percent predicted diffusion capacity for carbon monoxide (DLCO) and total lung capacity (TLC). Dyspnea was the predominant symptom in the cohort (78%) and had similar prevalence regardless of degree of diffusion impairment or restriction. Longitudinal evaluation revealed diffusion impairment (DLCO ≤80%) and pulmonary restriction (TLC ≤80%) in 51% of the cohort overall (n=479). In multivariable logistic regression analysis (adjusted odds ratio; aOR, 95% confidence interval [CI]), invasive mechanical ventilation during primary infection conferred the greatest increased odds of developing pulmonary Long COVID with diffusion impairment and restriction (aOR=10.9 [4.09-28.6]). Finally, a sub-analysis of CT imaging identified radiographic evidence of fibrosis in this patient population. CONCLUSIONS Longitudinal PFT measurements in patients with prolonged pulmonary symptoms after SARS-CoV-2 infection revealed persistent diffusion impaired restriction as a key feature of pulmonary Long COVID. These results emphasize the importance of incorporating PFTs into routine clinical practice for evaluation of patients with prolonged pulmonary symptoms after resolution of SARS-CoV-2. Subsequent clinical trials should leverage combined symptomatic and quantitative PFT measurements for more targeted enrollment of pulmonary Long COVID patients. FUNDING This work was supported by the National Institute of Allergy and Infectious Diseases (AI156898, K08AI129705), the National Heart, Lung, and Blood Institute (HL153113, OTA21-015E, HL149944), and the COVID-19 Urgent Research Response Fund established by the Hugh Kaul Precision Medicine Network at the University of Alabama at Birmingham.

Authors

Michael John Patton, Donald Benson, Sarah W. Robison, Dhaval Raval, Morgan L. Locy, Kinner Patel, Scott Grumley, Emily B. Levitan, Peter Morris, Matthew Might, Amit Gaggar, Nathaniel Erdmann

×

Endothelial HIFα-PDGF-B to smooth muscle Beclin1 signaling sustains pathological muscularization in pulmonary hypertension
Fatima Z. Saddouk, Andrew P. Kuzemczak, Junichi Saito, Daniel M. Greif
Fatima Z. Saddouk, Andrew P. Kuzemczak, Junichi Saito, Daniel M. Greif
View: Text | PDF

Endothelial HIFα-PDGF-B to smooth muscle Beclin1 signaling sustains pathological muscularization in pulmonary hypertension

  • Text
  • PDF
Abstract

Mechanisms underlying maintenance of pathological vascular hypermuscularization are poorly delineated. Herein, we investigated retention of smooth muscle cells (SMCs) coating normally unmuscularized distal pulmonary arterioles in pulmonary hypertension (PH) mediated by chronic hypoxia ± Sugen 5416, and reversal of this pathology. With hypoxia in mice or culture, lung endothelial cells (ECs) upregulated hypoxia-inducible factor (Hif)-1a and 2a which induce platelet-derived growth factor-B (PDGF-B), and these factors reduced to normoxic levels with re-normoxia. Re-normoxia reversed hypoxia-induced pulmonary vascular remodeling, but with EC HIFα over-expression during re-normoxia, pathological changes persisted. Conversely, after establishment of distal muscularization and PH, EC-specific deletion of Hif1a, Hif2a, or Pdgfb induced reversal. In human idiopathic pulmonary artery hypertension, HIF1A, HIF2A, PDGFB and autophagy-mediating gene products, including Beclin1, were upregulated in pulmonary artery SMCs and/or lung lysates. Furthermore, in mice, hypoxia-induced EC-derived PDGF-B upregulated Beclin1 in distal arteriole SMCs, and after distal muscularization was established, re-normoxia, EC Pdgfb deletion or treatment with STI571 (which inhibits PDGF receptors) downregulated SMC Beclin1 and other autophagy products. Finally, SMC-specific Becn1 deletion induced apoptosis, reversing distal muscularization and PH mediated by hypoxia ± Sugen 5416. Thus, chronic hypoxia induction of HIFα-to-PDGF-B axis in ECs is required for non-cell autonomous Beclin1-mediated survival of pathological distal arteriole SMCs.

Authors

Fatima Z. Saddouk, Andrew P. Kuzemczak, Junichi Saito, Daniel M. Greif

×

NKX2-5 regulates vessel remodelling in scleroderma-associated pulmonary arterial hypertension
Ioannis Papaioannou, Athina Dritsoula, Ping Kang, Reshma S. Baliga, Sarah L. Trinder, Emma Cook, Shiwen Xu, Adrian Hobbs, Christopher P. Denton, David J. Abraham, Markella Ponticos
Ioannis Papaioannou, Athina Dritsoula, Ping Kang, Reshma S. Baliga, Sarah L. Trinder, Emma Cook, Shiwen Xu, Adrian Hobbs, Christopher P. Denton, David J. Abraham, Markella Ponticos
View: Text | PDF

NKX2-5 regulates vessel remodelling in scleroderma-associated pulmonary arterial hypertension

  • Text
  • PDF
Abstract

NKX2-5 is a member of the homeobox-containing transcription factors critical in regulating tissue differentiation in development. Here, we report a role for NKX2-5 in vascular smooth muscle cell phenotypic modulation in vitro and in vascular remodelling in vivo. NKX2-5 is up-regulated in scleroderma (SSc) patients with pulmonary arterial hypertension. Suppression of NKX2-5 expression in smooth muscle cells, halted vascular smooth muscle proliferation and migration, enhanced contractility and blocked the expression of the extracellular matrix genes. Conversely, overexpression of NKX2-5 suppressed the expression of contractile genes (ACTA2, TAGLN, CNN1) and enhanced the expression of matrix genes (COL1) in vascular smooth muscle cells. In vivo, conditional deletion of NKX2-5 attenuated blood vessel remodelling and halted the progression to hypertension in the mouse chronic hypoxia mouse model. This study revealed that signals related to injury such as serum and low confluence, which induce NKX2-5 expression in cultured cells, is potentiated by TGFβ and further enhanced by hypoxia. The effect of TGFβ was sensitive to ERK5 and PI3K inhibition. Our data suggest a pivotal role for NKX2-5 in the phenotypic modulation of smooth muscle cells during pathological vascular remodelling and provide proof of concept for therapeutic targeting of NKX2-5 in vasculopathies.

Authors

Ioannis Papaioannou, Athina Dritsoula, Ping Kang, Reshma S. Baliga, Sarah L. Trinder, Emma Cook, Shiwen Xu, Adrian Hobbs, Christopher P. Denton, David J. Abraham, Markella Ponticos

×

In utero and postnatal ivacaftor/lumacaftor therapy rescues multiorgan disease in CFTR-F508del ferrets
Idil Apak Evans, Xingshen Sun, Bo Liang, Amber R. Vegter, Lydia Guo, Thomas J. Lynch, Yan Zhang, Yulong Zhang, Yaling Yi, Yu Yang, Zehua Feng, Soo Yeun Park, Amanita Shonka, Hannah McCumber, Lisi Qi, Peipei Wu, Guangming Liu, Allison Lacina, Kai Wang, Katherine N. Gibson-Corley, David K. Meyerholz, Dominique H. Limoli, Bradley H. Rosen, Ziying Yan, Douglas J. Bartels, John F. Engelhardt
Idil Apak Evans, Xingshen Sun, Bo Liang, Amber R. Vegter, Lydia Guo, Thomas J. Lynch, Yan Zhang, Yulong Zhang, Yaling Yi, Yu Yang, Zehua Feng, Soo Yeun Park, Amanita Shonka, Hannah McCumber, Lisi Qi, Peipei Wu, Guangming Liu, Allison Lacina, Kai Wang, Katherine N. Gibson-Corley, David K. Meyerholz, Dominique H. Limoli, Bradley H. Rosen, Ziying Yan, Douglas J. Bartels, John F. Engelhardt
View: Text | PDF

In utero and postnatal ivacaftor/lumacaftor therapy rescues multiorgan disease in CFTR-F508del ferrets

  • Text
  • PDF
Abstract

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, with F508del being the most prevalent mutation. The combination of CFTR modulators (potentiator and correctors) has provided benefit to CF patients carrying the F508del mutation; however, the safety and effectiveness of in utero combination modulator therapy remains unclear. We created a F508del ferret model to test whether ivacaftor/lumacaftor (VX-770/VX-809) therapy can rescue in utero and postnatal pathologies associated with CF. Using primary intestinal organoids and air-liquid interface cultures of airway epithelia, we demonstrate that the F508del mutation in ferret CFTR results in a severe folding and trafficking defect, which can be partially restored by treatment with CFTR modulators. In utero treatment of pregnant jills with ivacaftor/lumacaftor prevented meconium ileus at birth in F508del kits and sustained postnatal treatment of CF offspring improved survival and partially protected from pancreatic insufficiency. Withdrawal of ivacaftor/lumacaftor treatment from juvenile CF ferrets reestablished pancreatic and lung diseases, with altered pulmonary mechanics. These findings suggest that in utero intervention with a combination of CFTR modulators may provide therapeutic benefits to individuals with F508del. This CFTR-F508del ferret model may be useful for testing therapies using clinically translatable endpoints.

Authors

Idil Apak Evans, Xingshen Sun, Bo Liang, Amber R. Vegter, Lydia Guo, Thomas J. Lynch, Yan Zhang, Yulong Zhang, Yaling Yi, Yu Yang, Zehua Feng, Soo Yeun Park, Amanita Shonka, Hannah McCumber, Lisi Qi, Peipei Wu, Guangming Liu, Allison Lacina, Kai Wang, Katherine N. Gibson-Corley, David K. Meyerholz, Dominique H. Limoli, Bradley H. Rosen, Ziying Yan, Douglas J. Bartels, John F. Engelhardt

×

Integrated plasma proteomics identifies tuberculosis-specific diagnostic biomarkers
Hannah F. Schiff, Naomi F. Walker, Cesar Ugarte-Gil, Marc Tebruegge, Antigoni Manousopoulou, Spiros D. Garbis, Salah Mansour, Pak Ho Wong, Gabrielle Rockett, Paolo Piazza, Mahesan Niranjan, Andres F. Vallejo, Christopher H. Woelk, Robert J. Wilkinson, Liku B. Tezera, Diana Garay-Baquero, Paul Elkington
Hannah F. Schiff, Naomi F. Walker, Cesar Ugarte-Gil, Marc Tebruegge, Antigoni Manousopoulou, Spiros D. Garbis, Salah Mansour, Pak Ho Wong, Gabrielle Rockett, Paolo Piazza, Mahesan Niranjan, Andres F. Vallejo, Christopher H. Woelk, Robert J. Wilkinson, Liku B. Tezera, Diana Garay-Baquero, Paul Elkington
View: Text | PDF

Integrated plasma proteomics identifies tuberculosis-specific diagnostic biomarkers

  • Text
  • PDF
Abstract

Novel biomarkers to identify infectious patients transmitting Mycobacterium tuberculosis are urgently needed to control the global tuberculosis (TB) pandemic. We hypothesized that proteins released into the plasma in active pulmonary TB are clinically useful biomarkers to distinguish TB cases from healthy individuals and patients with other respiratory infections. We applied a highly sensitive non-depletion tandem mass spectrometry discovery approach to investigate plasma protein expression in pulmonary TB cases compared to healthy controls in South African and Peruvian cohorts. Bioinformatic analysis using linear modelling and network correlation analyses identified 118 differentially expressed proteins, significant through three complementary analytical pipelines. Candidate biomarkers were subsequently analysed in two validation cohorts of differing ethnicity using antibody-based proximity extension assays. TB-specific host biomarkers were confirmed. A six-protein diagnostic panel, comprising FETUB, FCGR3B, LRG1, SELL, CD14 and ADA2, differentiated patients with pulmonary TB from healthy controls and patients with other respiratory infections with high sensitivity and specificity in both cohorts. This biomarker panel exceeds the World Health Organisation Target Product Profile specificity criteria for a triage test for TB. The new biomarkers have potential for further development as near-patient TB screening assays, thereby helping to close the case-detection gap that fuels the global pandemic.

Authors

Hannah F. Schiff, Naomi F. Walker, Cesar Ugarte-Gil, Marc Tebruegge, Antigoni Manousopoulou, Spiros D. Garbis, Salah Mansour, Pak Ho Wong, Gabrielle Rockett, Paolo Piazza, Mahesan Niranjan, Andres F. Vallejo, Christopher H. Woelk, Robert J. Wilkinson, Liku B. Tezera, Diana Garay-Baquero, Paul Elkington

×

Activator protein transcription factors coordinate human IL-33 expression from noncanonical promoters in chronic airway disease
Heather E. Raphael, Ghandi F. Hassan, Omar A. Osorio, Lucy S. Cohen, Morgan D. Payne, Ella Katz-Kiriakos, Ishana Tata, Jamie Hicks, Derek E. Byers, Bo Zhang, Jen Alexander-Brett
Heather E. Raphael, Ghandi F. Hassan, Omar A. Osorio, Lucy S. Cohen, Morgan D. Payne, Ella Katz-Kiriakos, Ishana Tata, Jamie Hicks, Derek E. Byers, Bo Zhang, Jen Alexander-Brett
View: Text | PDF

Activator protein transcription factors coordinate human IL-33 expression from noncanonical promoters in chronic airway disease

  • Text
  • PDF
Abstract

IL-33 is a cytokine central to type 2 immune pathology in chronic airway disease. This cytokine is abundantly expressed in the respiratory epithelium and increased in disease, but how expression is regulated is undefined. Here we show that increased IL33 expression occurs from multiple noncanonical promoters in human chronic obstructive pulmonary disease (COPD), and it facilitates production of alternatively spliced isoforms in airway cells. We found that phorbol 12-myristate 13-acetate (PMA) can activate IL33 promoters through protein kinase C in primary airway cells and lines. Transcription factor (TF) binding arrays combined with RNA interference identified activator protein (AP) TFs as regulators of baseline and induced IL33 promoter activity. ATAC-Seq and ChIP-PCR identified chromatin accessibility and differential TF binding as additional control points for transcription from noncanonical promoters. In support of a role for these TFs in COPD pathogenesis, we found that AP-2 (TFAP2A, TFAP2C) and AP-1 (FOS and JUN) family members are upregulated in human COPD specimens. This study implicates integrative and pioneer TFs in regulating IL33 promoters and alternative splicing in human airway basal cells. Our work reveals a potentially novel approach for targeting IL-33 in development of therapeutics for COPD.

Authors

Heather E. Raphael, Ghandi F. Hassan, Omar A. Osorio, Lucy S. Cohen, Morgan D. Payne, Ella Katz-Kiriakos, Ishana Tata, Jamie Hicks, Derek E. Byers, Bo Zhang, Jen Alexander-Brett

×

Myeloid Zfhx3 deficiency protects against hypercapnia-induced suppression of host defense against influenza A virus
S. Marina Casalino-Matsuda, Fei Chen, Francisco J. Gonzalez-Gonzalez, Hiroaki Matsuda, Aisha Nair, Hiam Abdala-Valencia, G.R. Scott Budinger, Jin-Tang Dong, Greg J. Beitel, Peter H.S. Sporn
S. Marina Casalino-Matsuda, Fei Chen, Francisco J. Gonzalez-Gonzalez, Hiroaki Matsuda, Aisha Nair, Hiam Abdala-Valencia, G.R. Scott Budinger, Jin-Tang Dong, Greg J. Beitel, Peter H.S. Sporn
View: Text | PDF

Myeloid Zfhx3 deficiency protects against hypercapnia-induced suppression of host defense against influenza A virus

  • Text
  • PDF
Abstract

Hypercapnia, elevation of the partial pressure of CO2 in blood and tissues, is a risk factor for mortality in patients with severe acute and chronic lung diseases. We previously showed that hypercapnia inhibits multiple macrophage and neutrophil antimicrobial functions, and that elevated CO2 increases the mortality of bacterial and viral pneumonia in mice. Here, we show that normoxic hypercapnia downregulates innate immune and antiviral gene programs in alveolar macrophages (AMØs). We also show that zinc finger homeobox 3 (Zfhx3), a mammalian ortholog of zfh2, which mediates hypercapnic immune suppression in Drosophila, is expressed in mouse and human macrophages. Deletion of Zfhx3 in the myeloid lineage blocked the suppressive effect of hypercapnia on immune gene expression in AMØs and decreased viral replication, inflammatory lung injury and mortality in hypercapnic mice infected with influenza A virus. Our results establish Zfhx3 as the first known mammalian mediator of CO2 effects on immune gene expression and lay the basis for future studies to identify therapeutic targets to interrupt hypercapnic immunosuppression in patients with advanced lung disease.

Authors

S. Marina Casalino-Matsuda, Fei Chen, Francisco J. Gonzalez-Gonzalez, Hiroaki Matsuda, Aisha Nair, Hiam Abdala-Valencia, G.R. Scott Budinger, Jin-Tang Dong, Greg J. Beitel, Peter H.S. Sporn

×

Anti-CELA1 antibody KF4 prevents emphysema by inhibiting stretch-mediated remodeling
Mohit Ojha, Noah J. Smith, Andrew J. Devine, Rashika Joshi, Emily M. Goodman, Qiang Fan, Richard Schuman, Aleksey Porollo, J. Michael Wells, Ekta Tiwary, Matthew R. Batie, Jerilyn Gray, Hitesh Deshmukh, Michael T. Borchers, Samuel A. Ammerman, Brian M. Varisco
Mohit Ojha, Noah J. Smith, Andrew J. Devine, Rashika Joshi, Emily M. Goodman, Qiang Fan, Richard Schuman, Aleksey Porollo, J. Michael Wells, Ekta Tiwary, Matthew R. Batie, Jerilyn Gray, Hitesh Deshmukh, Michael T. Borchers, Samuel A. Ammerman, Brian M. Varisco
View: Text | PDF

Anti-CELA1 antibody KF4 prevents emphysema by inhibiting stretch-mediated remodeling

  • Text
  • PDF
Abstract

There are no therapies to prevent emphysema progression. Chymotrypsin-like elastase 1 (CELA1) is a serine protease that binds and cleaves lung elastin in a stretch-dependent manner and is required for emphysema in a murine antisense oligonucleotide model of α-1 antitrypsin (AAT) deficiency. This study tested whether CELA1 is important in strain-mediated lung matrix destruction in non–AAT-deficient emphysema and the efficacy of CELA1 neutralization. Airspace simplification was quantified after administration of tracheal porcine pancreatic elastase (PPE), after 8 months of cigarette smoke (CS) exposure, and in aging. In all 3 models, Cela1–/– mice had less emphysema and preserved lung elastin despite increased lung immune cells. A CELA1-neutralizing antibody was developed (KF4), and it inhibited stretch-inducible lung elastase in ex vivo mouse and human lung and immunoprecipitated CELA1 from human lung. In mice, systemically administered KF4 penetrated lung tissue in a dose-dependent manner and 5 mg/kg weekly prevented emphysema in the PPE model with both pre- and postinjury initiation and in the CS model. KF4 did not increase lung immune cells. CELA1-mediated lung matrix remodeling in response to strain is an important contributor to postnatal airspace simplification, and we believe that KF4 could be developed as a lung matrix–stabilizing therapy in emphysema.

Authors

Mohit Ojha, Noah J. Smith, Andrew J. Devine, Rashika Joshi, Emily M. Goodman, Qiang Fan, Richard Schuman, Aleksey Porollo, J. Michael Wells, Ekta Tiwary, Matthew R. Batie, Jerilyn Gray, Hitesh Deshmukh, Michael T. Borchers, Samuel A. Ammerman, Brian M. Varisco

×
  • ← Previous
  • 1
  • 2
  • …
  • 6
  • 7
  • 8
  • …
  • 34
  • 35
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts