Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact

Pulmonology

  • 183 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 15
  • 16
  • 17
  • 18
  • 19
  • Next →
IRF5 distinguishes severe asthma in humans and drives Th1 phenotype and airway hyperreactivity in mice
Timothy B. Oriss, … , Prabir Ray, Anuradha Ray
Timothy B. Oriss, … , Prabir Ray, Anuradha Ray
Published May 18, 2017
Citation Information: JCI Insight. 2017;2(10):e91019. https://doi.org/10.1172/jci.insight.91019.
View: Text | PDF

IRF5 distinguishes severe asthma in humans and drives Th1 phenotype and airway hyperreactivity in mice

  • Text
  • PDF
Abstract

Severe asthma (SA) is a significant problem both clinically and economically, given its poor response to corticosteroids (CS). We recently reported a complex type 1–dominated (IFN-γ–dominated) immune response in more than 50% of severe asthmatics despite high-dose CS treatment. Also, IFN-γ was found to be critical for increased airway hyperreactivity (AHR) in our model of SA. The transcription factor IRF5 expressed in M1 macrophages can induce a Th1/Th17 response in cocultured human T cells. Here we show markedly higher expression of IRF5 in bronchoalveolar lavage (BAL) cells of severe asthmatics as compared with that in cells from milder asthmatics or healthy controls. Using our SA mouse model, we demonstrate that lack of IRF5 in lymph node migratory DCs severely limits their ability to stimulate the generation of IFN-γ– and IL-17–producing CD4+ T cells and IRF5–/– mice subjected to the SA model displayed significantly lower IFN-γ and IL-17 responses, albeit showing a reciprocal increase in Th2 response. However, the absence of IRF5 rendered the mice responsive to CS with suppression of the heightened Th2 response. These data support the notion that IRF5 inhibition in combination with CS may be a viable approach to manage disease in a subset of severe asthmatics.

Authors

Timothy B. Oriss, Mahesh Raundhal, Christina Morse, Rachael E. Huff, Sudipta Das, Rachel Hannum, Marc C. Gauthier, Kathryn L. Scholl, Krishnendu Chakraborty, Seyed M. Nouraie, Sally E. Wenzel, Prabir Ray, Anuradha Ray

×

Uncoupling of the profibrotic and hemostatic effects of thrombin in lung fibrosis
Barry S. Shea, … , Peter Caravan, Andrew M. Tager
Barry S. Shea, … , Peter Caravan, Andrew M. Tager
Published May 4, 2017
Citation Information: JCI Insight. 2017;2(9):e86608. https://doi.org/10.1172/jci.insight.86608.
View: Text | PDF

Uncoupling of the profibrotic and hemostatic effects of thrombin in lung fibrosis

  • Text
  • PDF
Abstract

Fibrotic lung disease, most notably idiopathic pulmonary fibrosis (IPF), is thought to result from aberrant wound-healing responses to repetitive lung injury. Increased vascular permeability is a cardinal response to tissue injury, but whether it is mechanistically linked to lung fibrosis is unknown. We previously described a model in which exaggeration of vascular leak after lung injury shifts the outcome of wound-healing responses from normal repair to pathological fibrosis. Here we report that the fibrosis produced in this model is highly dependent on thrombin activity and its downstream signaling pathways. Direct thrombin inhibition with dabigatran significantly inhibited protease-activated receptor-1 (PAR1) activation, integrin αvβ6 induction, TGF-β activation, and the development of pulmonary fibrosis in this vascular leak–dependent model. We used a potentially novel imaging method — ultashort echo time (UTE) lung magnetic resonance imaging (MRI) with the gadolinium-based, fibrin-specific probe EP-2104R — to directly visualize fibrin accumulation in injured mouse lungs, and to correlate the antifibrotic effects of dabigatran with attenuation of fibrin deposition. We found that inhibition of the profibrotic effects of thrombin can be uncoupled from inhibition of hemostasis, as therapeutic anticoagulation with warfarin failed to downregulate the PAR1/αvβ6/TGF-β axis or significantly protect against fibrosis. These findings have direct and important clinical implications, given recent findings that warfarin treatment is not beneficial in IPF, and the clinical availability of direct thrombin inhibitors that our data suggest could benefit these patients.

Authors

Barry S. Shea, Clemens K. Probst, Patricia L. Brazee, Nicholas J. Rotile, Francesco Blasi, Paul H. Weinreb, Katharine E. Black, David E. Sosnovik, Elizabeth M. Van Cott, Shelia M. Violette, Peter Caravan, Andrew M. Tager

×

Cannabinoid CB1 receptor overactivity contributes to the pathogenesis of idiopathic pulmonary fibrosis
Resat Cinar, … , William A. Gahl, George Kunos
Resat Cinar, … , William A. Gahl, George Kunos
Published April 20, 2017
Citation Information: JCI Insight. 2017;2(8):e92281. https://doi.org/10.1172/jci.insight.92281.
View: Text | PDF

Cannabinoid CB1 receptor overactivity contributes to the pathogenesis of idiopathic pulmonary fibrosis

  • Text
  • PDF
Abstract

Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease without effective treatment, highlighting the need for identifying new targets and treatment modalities. The pathogenesis of IPF is complex, and engaging multiple targets simultaneously might improve therapeutic efficacy. To assess the role of the endocannabinoid/cannabinoid receptor 1 (endocannabinoid/CB1R) system in IPF and its interaction with inducible nitric oxide synthase (iNOS) as dual therapeutic targets, we analyzed lung fibrosis and the status of the endocannabinoid/CB1R system and iNOS in mice with bleomycin-induced pulmonary fibrosis (PF) and in lung tissue and bronchoalveolar lavage fluid (BALF) from patients with IPF, as well as controls. In addition, we investigated the antifibrotic efficacy in the mouse PF model of an orally bioavailable and peripherally restricted CB1R/iNOS hybrid inhibitor. We report that increased activity of the endocannabinoid/CB1R system parallels disease progression in the lungs of patients with idiopathic PF and in mice with bleomycin-induced PF and is associated with increased tissue levels of interferon regulatory factor-5. Furthermore, we demonstrate that simultaneous engagement of the secondary target iNOS by the hybrid CB1R/iNOS inhibitor has greater antifibrotic efficacy than inhibition of CB1R alone. This hybrid antagonist also arrests the progression of established fibrosis in mice, thus making it a viable candidate for future translational studies in IPF.

Authors

Resat Cinar, Bernadette R. Gochuico, Malliga R. Iyer, Tony Jourdan, Tadafumi Yokoyama, Joshua K. Park, Nathan J. Coffey, Hadass Pri-Chen, Gergő Szanda, Ziyi Liu, Ken Mackie, William A. Gahl, George Kunos

×

MicroRNA-125a and -b inhibit A20 and MAVS to promote inflammation and impair antiviral response in COPD
Alan C-Y. Hsu, … , Philip M. Hansbro, Peter A. Wark
Alan C-Y. Hsu, … , Philip M. Hansbro, Peter A. Wark
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e90443. https://doi.org/10.1172/jci.insight.90443.
View: Text | PDF

MicroRNA-125a and -b inhibit A20 and MAVS to promote inflammation and impair antiviral response in COPD

  • Text
  • PDF
Abstract

Influenza A virus (IAV) infections lead to severe inflammation in the airways. Patients with chronic obstructive pulmonary disease (COPD) characteristically have exaggerated airway inflammation and are more susceptible to infections with severe symptoms and increased mortality. The mechanisms that control inflammation during IAV infection and the mechanisms of immune dysregulation in COPD are unclear. We found that IAV infections lead to increased inflammatory and antiviral responses in primary bronchial epithelial cells (pBECs) from healthy nonsmoking and smoking subjects. In pBECs from COPD patients, infections resulted in exaggerated inflammatory but deficient antiviral responses. A20 is an important negative regulator of NF-κB–mediated inflammatory but not antiviral responses, and A20 expression was reduced in COPD. IAV infection increased the expression of miR-125a or -b, which directly reduced the expression of A20 and mitochondrial antiviral signaling (MAVS), and caused exaggerated inflammation and impaired antiviral responses. These events were replicated in vivo in a mouse model of experimental COPD. Thus, miR-125a or -b and A20 may be targeted therapeutically to inhibit excessive inflammatory responses and enhance antiviral immunity in IAV infections and in COPD.

Authors

Alan C-Y. Hsu, Kamal Dua, Malcolm R. Starkey, Tatt-Jhong Haw, Prema M. Nair, Kristy Nichol, Nathan Zammit, Shane T. Grey, Katherine J. Baines, Paul S. Foster, Philip M. Hansbro, Peter A. Wark

×

Defective postsecretory maturation of MUC5B mucin in cystic fibrosis airways
Lubna H. Abdullah, … , Stephen T. Ballard, Mehmet Kesimer
Lubna H. Abdullah, … , Stephen T. Ballard, Mehmet Kesimer
Published March 23, 2017
Citation Information: JCI Insight. 2017;2(6):e89752. https://doi.org/10.1172/jci.insight.89752.
View: Text | PDF

Defective postsecretory maturation of MUC5B mucin in cystic fibrosis airways

  • Text
  • PDF
Abstract

In cystic fibrosis (CF), airway mucus becomes thick and viscous, and its clearance from the airways is impaired. The gel-forming mucins undergo an ordered “unpacking/maturation” process after granular release that requires an optimum postsecretory environment, including hydration and pH. We hypothesized that this unpacking process is compromised in the CF lung due to abnormal transepithelial fluid transport that reduces airway surface hydration and alters ionic composition. Using human tracheobronchial epithelial cells derived from non-CF and CF donors and mucus samples from human subjects and domestic pigs, we investigated the process of postsecretory mucin unfolding/maturation, how these processes are defective in CF airways, and the probable mechanism underlying defective unfolding. First, we found that mucins released into a normal lung environment transform from a compact granular form to a linear form. Second, we demonstrated that this maturation process is defective in the CF airway environment. Finally, we demonstrated that independent of HCO3− and pH levels, airway surface dehydration was the major determinant of this abnormal unfolding process. This defective unfolding/maturation process after granular release suggests that the CF extracellular environment is ion/water depleted and likely contributes to abnormal mucus properties in CF airways prior to infection and inflammation.

Authors

Lubna H. Abdullah, Jessica R. Evans, T. Tiffany Wang, Amina A. Ford, Alexander M. Makhov, Kristine Nguyen, Raymond D. Coakley, Jack D. Griffith, C. William Davis, Stephen T. Ballard, Mehmet Kesimer

×

Platelets from pulmonary hypertension patients show increased mitochondrial reserve capacity
Quyen L. Nguyen, … , Marc A. Simon, Sruti Shiva
Quyen L. Nguyen, … , Marc A. Simon, Sruti Shiva
Published March 9, 2017
Citation Information: JCI Insight. 2017;2(5):e91415. https://doi.org/10.1172/jci.insight.91415.
View: Text | PDF

Platelets from pulmonary hypertension patients show increased mitochondrial reserve capacity

  • Text
  • PDF
Abstract

Accumulating evidence suggests that altered cellular metabolism is systemic in pulmonary hypertension (PH) and central to disease pathogenesis. However, bioenergetic changes in PH patients and their association with disease severity remain unclear. Here, we hypothesize that alteration in bioenergetic function is present in platelets from PH patients and correlates with clinical parameters of PH. Platelets isolated from controls and PH patients (n = 28) were subjected to extracellular flux analysis to determine oxygen consumption and glycolytic rates. Platelets from PH patients showed greater glycolytic rates than controls. Surprisingly, this was accompanied by significant increases in the maximal capacity for oxygen consumption, leading to enhanced respiratory reserve capacity in PH platelets. This increased platelet reserve capacity correlated with mean pulmonary artery pressure, pulmonary vascular resistance, and right ventricular stroke work index in PH patients and was abolished by the inhibition of fatty acid oxidation (FAO). Consistent with a shift to FAO, PH platelets showed augmented enzymatic activity of carnitine palmitoyltransferase-1 and electron transport chain complex II. These data extend the observation of a metabolic alteration in PH from the pulmonary vascular axis to the hematologic compartment and suggest that measurement of platelet bioenergetics is potentially useful in assessment of disease progression and severity.

Authors

Quyen L. Nguyen, Catherine Corey, Pamela White, Annie Watson, Mark T. Gladwin, Marc A. Simon, Sruti Shiva

×

Assessment of ciliary phenotype in primary ciliary dyskinesia by micro-optical coherence tomography
George M. Solomon, … , Cecilia W. Lo, Steven M. Rowe
George M. Solomon, … , Cecilia W. Lo, Steven M. Rowe
Published March 9, 2017
Citation Information: JCI Insight. 2017;2(5):e91702. https://doi.org/10.1172/jci.insight.91702.
View: Text | PDF

Assessment of ciliary phenotype in primary ciliary dyskinesia by micro-optical coherence tomography

  • Text
  • PDF
Abstract

Ciliary motion defects cause defective mucociliary transport (MCT) in primary ciliary dyskinesia (PCD). Current diagnostic tests do not assess how MCT is affected by perturbation of ciliary motion. In this study, we sought to use micro-optical coherence tomography (μOCT) to delineate the mechanistic basis of cilia motion defects of PCD genes by functional categorization of cilia motion. Tracheae from three PCD mouse models were analyzed using μOCT to characterize ciliary motion and measure MCT. We developed multiple measures of ciliary activity, integrated these measures, and quantified dyskinesia by the angular range of the cilia effective stroke (ARC). Ccdc39–/– mice, with a known severe PCD mutation of ciliary axonemal organization, had absent motile ciliary regions, resulting in abrogated MCT. In contrast, Dnah5–/– mice, with a missense mutation of the outer dynein arms, had reduced ciliary beat frequency (CBF) but preserved motile area and ciliary stroke, maintaining some MCT. Wdr69–/– PCD mice exhibited normal motile area and CBF and partially delayed MCT due to abnormalities of ciliary ARC. Visualization of ciliary motion using μOCT provides quantitative assessment of ciliary motion and MCT. Comprehensive ciliary motion investigation in situ classifies ciliary motion defects and quantifies their contribution to delayed mucociliary clearance.

Authors

George M. Solomon, Richard Francis, Kengyeh K. Chu, Susan E. Birket, George Gabriel, John E. Trombley, Kristi L. Lemke, Nikolai Klena, Brett Turner, Guillermo J. Tearney, Cecilia W. Lo, Steven M. Rowe

×

Hsp90 regulation of fibroblast activation in pulmonary fibrosis
Vishwaraj Sontake, … , Anil G. Jegga, Satish K. Madala
Vishwaraj Sontake, … , Anil G. Jegga, Satish K. Madala
Published February 23, 2017
Citation Information: JCI Insight. 2017;2(4):e91454. https://doi.org/10.1172/jci.insight.91454.
View: Text | PDF

Hsp90 regulation of fibroblast activation in pulmonary fibrosis

  • Text
  • PDF
Abstract

Idiopathic pulmonary fibrosis (IPF) is a severe fibrotic lung disease associated with fibroblast activation that includes excessive proliferation, tissue invasiveness, myofibroblast transformation, and extracellular matrix (ECM) production. To identify inhibitors that can attenuate fibroblast activation, we queried IPF gene signatures against a library of small-molecule-induced gene-expression profiles and identified Hsp90 inhibitors as potential therapeutic agents that can suppress fibroblast activation in IPF. Although Hsp90 is a molecular chaperone that regulates multiple processes involved in fibroblast activation, it has not been previously proposed as a molecular target in IPF. Here, we found elevated Hsp90 staining in lung biopsies of patients with IPF. Notably, fibroblasts isolated from fibrotic lesions showed heightened Hsp90 ATPase activity compared with normal fibroblasts. 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), a small-molecule inhibitor of Hsp90 ATPase activity, attenuated fibroblast activation and also TGF-β–driven effects on fibroblast to myofibroblast transformation. The loss of the Hsp90AB, but not the Hsp90AA isoform, resulted in reduced fibroblast proliferation, myofibroblast transformation, and ECM production. Finally, in vivo therapy with 17-AAG attenuated progression of established and ongoing fibrosis in a mouse model of pulmonary fibrosis, suggesting that targeting Hsp90 represents an effective strategy for the treatment of fibrotic lung disease.

Authors

Vishwaraj Sontake, Yunguan Wang, Rajesh K. Kasam, Debora Sinner, Geereddy B. Reddy, Anjaparavanda P. Naren, Francis X. McCormack, Eric S. White, Anil G. Jegga, Satish K. Madala

×

α2-Adrenergic blockade rescues hypoglossal motor defense against obstructive sleep apnea
Gang Song, Chi-Sang Poon
Gang Song, Chi-Sang Poon
Published February 23, 2017
Citation Information: JCI Insight. 2017;2(4):e91456. https://doi.org/10.1172/jci.insight.91456.
View: Text | PDF

α2-Adrenergic blockade rescues hypoglossal motor defense against obstructive sleep apnea

  • Text
  • PDF
Abstract

Decreased noradrenergic excitation of hypoglossal motoneurons during sleep causing hypotonia of pharyngeal dilator muscles is a major contributor to the pathogenesis of obstructive sleep apnea (OSA), a widespread disease for which treatment options are limited. Previous OSA drug candidates targeting various excitatory/inhibitory receptors on hypoglossal motoneurons have proved unviable in reactivating these neurons, particularly during rapid-eye-movement (REM) sleep. To identify a viable drug target, we show that the repurposed α2-adrenergic antagonist yohimbine potently reversed the depressant effect of REM sleep on baseline hypoglossal motoneuron activity (a first-line motor defense against OSA) in rats. Remarkably, yohimbine also restored the obstructive apnea–induced long-term facilitation of hypoglossal motoneuron activity (hLTF), a much-neglected form of noradrenergic-dependent neuroplasticity that could provide a second-line motor defense against OSA but was also depressed during REM sleep. Corroborating immunohistologic, optogenetic, and pharmacologic evidence confirmed that yohimbine’s beneficial effects on baseline hypoglossal motoneuron activity and hLTF were mediated mainly through activation of pontine A7 and A5 noradrenergic neurons. Our results suggest a 2-tier (impaired first- and second-line motor defense) mechanism of noradrenergic-dependent pathogenesis of OSA and a promising pharmacotherapy for rescuing both these intrinsic defenses against OSA through disinhibition of A7 and A5 neurons by α2-adrenergic blockade.

Authors

Gang Song, Chi-Sang Poon

×

Mitochondrial CaMKII inhibition in airway epithelium protects against allergic asthma
Sara C. Sebag, … , Mark E. Anderson, Isabella M. Grumbach
Sara C. Sebag, … , Mark E. Anderson, Isabella M. Grumbach
Published February 9, 2017
Citation Information: JCI Insight. 2017;2(3):e88297. https://doi.org/10.1172/jci.insight.88297.
View: Text | PDF

Mitochondrial CaMKII inhibition in airway epithelium protects against allergic asthma

  • Text
  • PDF
Abstract

Excessive ROS promote allergic asthma, a condition characterized by airway inflammation, eosinophilic inflammation, and increased airway hyperreactivity (AHR). The mechanisms by which airway ROS are increased and the relationship between increased airway ROS and disease phenotypes are incompletely defined. Mitochondria are an important source of cellular ROS production, and our group discovered that Ca2+/calmodulin-dependent protein kinase II (CaMKII) is present in mitochondria and activated by oxidation. Furthermore, mitochondrial-targeted antioxidant therapy reduced the severity of allergic asthma in a mouse model. Based on these findings, we developed a mouse model of CaMKII inhibition targeted to mitochondria in airway epithelium. We challenged these mice with OVA or Aspergillus fumigatus. Mitochondrial CaMKII inhibition abrogated AHR, inflammation, and eosinophilia following OVA and A. fumigatus challenge. Mitochondrial ROS were decreased after agonist stimulation in the presence of mitochondrial CaMKII inhibition. This correlated with blunted induction of NF-κB, the NLRP3 inflammasome, and eosinophilia in transgenic mice. These findings demonstrate a pivotal role for mitochondrial CaMKII in airway epithelium in mitochondrial ROS generation, eosinophilic inflammation, and AHR, providing insights into how mitochondrial ROS mediate features of allergic asthma.

Authors

Sara C. Sebag, Olha M. Koval, John D. Paschke, Christopher J. Winters, Omar A. Jaffer, Ryszard Dworski, Fayyaz S. Sutterwala, Mark E. Anderson, Isabella M. Grumbach

×
  • ← Previous
  • 1
  • 2
  • …
  • 15
  • 16
  • 17
  • 18
  • 19
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts