Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Ophthalmology

  • 60 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • Next →
Fully automated, deep learning segmentation of oxygen-induced retinopathy images
Sa Xiao, … , Martin Friedlander, Aaron Y. Lee
Sa Xiao, … , Martin Friedlander, Aaron Y. Lee
Published December 21, 2017
Citation Information: JCI Insight. 2017;2(24):e97585. https://doi.org/10.1172/jci.insight.97585.
View: Text | PDF

Fully automated, deep learning segmentation of oxygen-induced retinopathy images

  • Text
  • PDF
Abstract

Oxygen-induced retinopathy (OIR) is a widely used model to study ischemia-driven neovascularization (NV) in the retina and to serve in proof-of-concept studies in evaluating antiangiogenic drugs for ocular, as well as nonocular, diseases. The primary parameters that are analyzed in this mouse model include the percentage of retina with vaso-obliteration (VO) and NV areas. However, quantification of these two key variables comes with a great challenge due to the requirement of human experts to read the images. Human readers are costly, time-consuming, and subject to bias. Using recent advances in machine learning and computer vision, we trained deep learning neural networks using over a thousand segmentations to fully automate segmentation in OIR images. While determining the percentage area of VO, our algorithm achieved a similar range of correlation coefficients to that of expert inter-human correlation coefficients. In addition, our algorithm achieved a higher range of correlation coefficients compared with inter-expert correlation coefficients for quantification of the percentage area of neovascular tufts. In summary, we have created an open-source, fully automated pipeline for the quantification of key values of OIR images using deep learning neural networks.

Authors

Sa Xiao, Felicitas Bucher, Yue Wu, Ariel Rokem, Cecilia S. Lee, Kyle V. Marra, Regis Fallon, Sophia Diaz-Aguilar, Edith Aguilar, Martin Friedlander, Aaron Y. Lee

×

Therapeutic drug repositioning using personalized proteomics of liquid biopsies
Gabriel Velez, … , Stephen H. Tsang, Vinit B. Mahajan
Gabriel Velez, … , Stephen H. Tsang, Vinit B. Mahajan
Published December 21, 2017
Citation Information: JCI Insight. 2017;2(24):e97818. https://doi.org/10.1172/jci.insight.97818.
View: Text | PDF

Therapeutic drug repositioning using personalized proteomics of liquid biopsies

  • Text
  • PDF
Abstract

BACKGROUND. In patients with limited response to conventional therapeutics, repositioning of already approved drugs can bring new, more effective options. Current drug repositioning methods, however, frequently rely on retrospective computational analyses and genetic testing — time consuming methods that delay application of repositioned drugs. Here, we show how proteomic analysis of liquid biopsies successfully guided treatment of neovascular inflammatory vitreoretinopathy (NIV), an inherited autoinflammatory disease with otherwise poor clinical outcomes. METHODS. Vitreous biopsies from NIV patients were profiled by an antibody array for expression of 200 cytokine-signaling proteins. Non-NIV controls were compared with NIV samples from various stages of disease progression. Patterns were identified by 1-way ANOVA, hierarchical clustering, and pathway analysis. Subjects treated with repositioned therapies were followed longitudinally. RESULTS. Proteomic profiles revealed molecular pathways in NIV pathologies and implicated superior and inferior targets for therapy. Anti-VEGF injections resolved vitreous hemorrhages without the need for vitrectomy surgery. Methotrexate injections reversed inflammatory cell reactions without the side effects of corticosteroids. Anti–IL-6 therapy prevented recurrent fibrosis and retinal detachment where all prior antiinflammatory interventions had failed. The cytokine array also showed that TNF-α levels were normal and that corticosteroid-sensitive pathways were absent in fibrotic NIV, helping explain prior failure of these conventional therapeutic approaches. CONCLUSIONS. Personalized proteomics can uncover highly personalized therapies for autoinflammatory disease that can be timed with specific pathologic activities. This precision medicine strategy can also help prevent delivery of ineffective drugs. Importantly, proteomic profiling of liquid biopsies offers an endpoint analysis that can directly guide treatment using available drugs.

Authors

Gabriel Velez, Alexander G. Bassuk, Diana Colgan, Stephen H. Tsang, Vinit B. Mahajan

×

Purinergic dysregulation causes hypertensive glaucoma–like optic neuropathy
Youichi Shinozaki, … , Takeshi Iwata, Schuichi Koizumi
Youichi Shinozaki, … , Takeshi Iwata, Schuichi Koizumi
Published October 5, 2017
Citation Information: JCI Insight. 2017;2(19):e93456. https://doi.org/10.1172/jci.insight.93456.
View: Text | PDF

Purinergic dysregulation causes hypertensive glaucoma–like optic neuropathy

  • Text
  • PDF
Abstract

Glaucoma is an optic neuropathy characterized by progressive degeneration of retinal ganglion cells (RGCs) and visual loss. Although one of the highest risk factors for glaucoma is elevated intraocular pressure (IOP) and reduction in IOP is the only proven treatment, the mechanism of IOP regulation is poorly understood. We report that the P2Y6 receptor is critical for lowering IOP and that ablation of the P2Y6 gene in mice (P2Y6KO) results in hypertensive glaucoma–like optic neuropathy. Topically applied uridine diphosphate, an endogenous selective agonist for the P2Y6 receptor, decreases IOP. The P2Y6 receptor was expressed in nonpigmented epithelial cells of the ciliary body and controlled aqueous humor dynamics. P2Y6KO mice exhibited sustained elevation of IOP, age-dependent damage to the optic nerve, thinning of ganglion cell plus inner plexiform layers, and a reduction of RGC numbers. These changes in P2Y6KO mice were attenuated by an IOP lowering agent. Consistent with RGC damage, visual functions were impaired in middle-aged P2Y6KO mice. We also found that expression and function of P2Y6 receptors in WT mice were significantly reduced by aging, another important risk factor for glaucoma. In summary, our data show that dysfunctional purinergic signaling causes IOP dysregulation, resulting in glaucomatous optic neuropathy.

Authors

Youichi Shinozaki, Kenji Kashiwagi, Kazuhiko Namekata, Akiko Takeda, Nobuhiko Ohno, Bernard Robaye, Takayuki Harada, Takeshi Iwata, Schuichi Koizumi

×

Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease
Yosef Koronyo, … , Keith L. Black, Maya Koronyo-Hamaoui
Yosef Koronyo, … , Keith L. Black, Maya Koronyo-Hamaoui
Published August 17, 2017
Citation Information: JCI Insight. 2017;2(16):e93621. https://doi.org/10.1172/jci.insight.93621.
View: Text | PDF

Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease

  • Text
  • PDF
Abstract

BACKGROUND. Noninvasive detection of Alzheimer’s disease (AD) with high specificity and sensitivity can greatly facilitate identification of at-risk populations for earlier, more effective intervention. AD patients exhibit a myriad of retinal pathologies, including hallmark amyloid β-protein (Aβ) deposits. METHODS. Burden, distribution, cellular layer, and structure of retinal Aβ plaques were analyzed in flat mounts and cross sections of definite AD patients and controls (n = 37). In a proof-of-concept retinal imaging trial (n = 16), amyloid probe curcumin formulation was determined and protocol was established for retinal amyloid imaging in live patients. RESULTS. Histological examination uncovered classical and neuritic-like Aβ deposits with increased retinal Aβ42 plaques (4.7-fold; P = 0.0063) and neuronal loss (P = 0.0023) in AD patients versus matched controls. Retinal Aβ plaque mirrored brain pathology, especially in the primary visual cortex (P = 0.0097 to P = 0.0018; Pearson’s r = 0.84–0.91). Retinal deposits often associated with blood vessels and occurred in hot spot peripheral regions of the superior quadrant and innermost retinal layers. Transmission electron microscopy revealed retinal Aβ assembled into protofibrils and fibrils. Moreover, the ability to image retinal amyloid deposits with solid-lipid curcumin and a modified scanning laser ophthalmoscope was demonstrated in live patients. A fully automated calculation of the retinal amyloid index (RAI), a quantitative measure of increased curcumin fluorescence, was constructed. Analysis of RAI scores showed a 2.1-fold increase in AD patients versus controls (P = 0.0031). CONCLUSION. The geometric distribution and increased burden of retinal amyloid pathology in AD, together with the feasibility to noninvasively detect discrete retinal amyloid deposits in living patients, may lead to a practical approach for large-scale AD diagnosis and monitoring. FUNDING. National Institute on Aging award (AG044897) and The Saban and The Marciano Family Foundations.

Authors

Yosef Koronyo, David Biggs, Ernesto Barron, David S. Boyer, Joel A. Pearlman, William J. Au, Shawn J. Kile, Austin Blanco, Dieu-Trang Fuchs, Adeel Ashfaq, Sally Frautschy, Gregory M. Cole, Carol A. Miller, David R. Hinton, Steven R. Verdooner, Keith L. Black, Maya Koronyo-Hamaoui

×

GDF15 is elevated in mice following retinal ganglion cell death and in glaucoma patients
Norimitsu Ban, … , Jun Yoshino, Rajendra S. Apte
Norimitsu Ban, … , Jun Yoshino, Rajendra S. Apte
Published May 4, 2017
Citation Information: JCI Insight. 2017;2(9):e91455. https://doi.org/10.1172/jci.insight.91455.
View: Text | PDF

GDF15 is elevated in mice following retinal ganglion cell death and in glaucoma patients

  • Text
  • PDF
Abstract

Glaucoma is the second leading cause of blindness worldwide. Physicians often use surrogate endpoints to monitor the progression of glaucomatous neurodegeneration. These approaches are limited in their ability to quantify disease severity and progression due to inherent subjectivity, unreliability, and limitations of normative databases. Therefore, there is a critical need to identify specific molecular markers that predict or measure glaucomatous neurodegeneration. Here, we demonstrate that growth differentiation factor 15 (GDF15) is associated with retinal ganglion cell death. Gdf15 expression in the retina is specifically increased after acute injury to retinal ganglion cell axons and in a murine chronic glaucoma model. We also demonstrate that the ganglion cell layer may be one of the sources of secreted GDF15 and that GDF15 diffuses to and can be detected in aqueous humor (AH). In validating these findings in human patients with glaucoma, we find not only that GDF15 is increased in AH of patients with primary open angle glaucoma (POAG), but also that elevated GDF15 levels are significantly associated with worse functional outcomes in glaucoma patients, as measured by visual field testing. Thus, GDF15 maybe a reliable metric of glaucomatous neurodegeneration, although further prospective validation studies will be necessary to determine if GDF15 can be used in clinical practice.

Authors

Norimitsu Ban, Carla J. Siegfried, Jonathan B. Lin, Ying-Bo Shui, Julia Sein, Wolfgang Pita-Thomas, Abdoulaye Sene, Andrea Santeford, Mae Gordon, Rachel Lamb, Zhenyu Dong, Shannon C. Kelly, Valeria Cavalli, Jun Yoshino, Rajendra S. Apte

×

Zika virus infects cells lining the blood-retinal barrier and causes chorioretinal atrophy in mouse eyes
Pawan Kumar Singh, … , Fu-Shin Yu, Ashok Kumar
Pawan Kumar Singh, … , Fu-Shin Yu, Ashok Kumar
Published February 23, 2017
Citation Information: JCI Insight. 2017;2(4):e92340. https://doi.org/10.1172/jci.insight.92340.
View: Text | PDF

Zika virus infects cells lining the blood-retinal barrier and causes chorioretinal atrophy in mouse eyes

  • Text
  • PDF
Abstract

Zika virus (ZIKV) is an important pathogen that causes not only neurologic, but also ocular, abnormalities. Thus, it is imperative that models to study ZIKV pathogenesis in the eye are developed to identify potential targets for interventions. Here, we studied ZIKV interactions with human retinal cells and evaluated ZIKV’s pathobiology in mouse eyes. We showed that cells lining the blood-retinal barrier (BRB), the retinal endothelium, and retinal pigment epithelium (RPE) were highly permissive and susceptible to ZIKV-induced cell death. Direct inoculation of ZIKV in eyes of adult C57BL/6 and IFN-stimulated gene 15 (ISG15) KO mice caused chorioretinal atrophy with RPE mottling, a common ocular manifestation of congenital ZIKV infection in humans. This response was associated with induced expression of multiple inflammatory and antiviral (IFNs) response genes in the infected mouse retina. Interestingly, ISG15 KO eyes exhibited severe chorioretinitis, which coincided with increased retinal cell death and higher ZIKV replication. Collectively, our study provides the first evidence to our knowledge that ZIKV causes retinal lesions and infects the cells lining the BRB and that ISG15 plays a role in retinal innate defense against ZIKV infection. Our mouse model can be used to study mechanisms underlying ZIKV-induced chorioretinitis and to gauge ocular antiviral therapies.

Authors

Pawan Kumar Singh, John-Michael Guest, Mamta Kanwar, Joseph Boss, Nan Gao, Mark S. Juzych, Gary W. Abrams, Fu-Shin Yu, Ashok Kumar

×

Sustained inflammation after pericyte depletion induces irreversible blood-retina barrier breakdown
Shuntaro Ogura, … , Yuichiro Ogura, Akiyoshi Uemura
Shuntaro Ogura, … , Yuichiro Ogura, Akiyoshi Uemura
Published February 9, 2017
Citation Information: JCI Insight. 2017;2(3):e90905. https://doi.org/10.1172/jci.insight.90905.
View: Text | PDF

Sustained inflammation after pericyte depletion induces irreversible blood-retina barrier breakdown

  • Text
  • PDF
Abstract

In the central nervous system, endothelial cells (ECs) and pericytes (PCs) of blood vessel walls cooperatively form a physical and chemical barrier to maintain neural homeostasis. However, in diabetic retinopathy (DR), the loss of PCs from vessel walls is assumed to cause breakdown of the blood-retina barrier (BRB) and subsequent vision-threatening vascular dysfunctions. Nonetheless, the lack of adequate DR animal models has precluded disease understanding and drug discovery. Here, by using an anti-PDGFRβ antibody, we show that transient inhibition of the PC recruitment to developing retinal vessels sustained EC-PC dissociations and BRB breakdown in adult mouse retinas, reproducing characteristic features of DR such as hyperpermeability, hypoperfusion, and neoangiogenesis. Notably, PC depletion directly induced inflammatory responses in ECs and perivascular infiltration of macrophages, whereby macrophage-derived VEGF and placental growth factor (PlGF) activated VEGFR1 in macrophages and VEGFR2 in ECs. Moreover, angiopoietin-2 (Angpt2) upregulation and Tie1 downregulation activated FOXO1 in PC-free ECs locally at the leaky aneurysms. This cycle of vessel damage was shut down by simultaneously blocking VEGF, PlGF, and Angpt2, thus restoring the BRB integrity. Together, our model provides new opportunities for identifying the sequential events triggered by PC deficiency, not only in DR, but also in various neurological disorders.

Authors

Shuntaro Ogura, Kaori Kurata, Yuki Hattori, Hiroshi Takase, Toshina Ishiguro-Oonuma, Yoonha Hwang, Soyeon Ahn, Inwon Park, Wataru Ikeda, Sentaro Kusuhara, Yoko Fukushima, Hiromi Nara, Hideto Sakai, Takashi Fujiwara, Jun Matsushita, Masatsugu Ema, Masanori Hirashima, Takashi Minami, Masabumi Shibuya, Nobuyuki Takakura, Pilhan Kim, Takaki Miyata, Yuichiro Ogura, Akiyoshi Uemura

×

MUTYH promotes oxidative microglial activation and inherited retinal degeneration
Shunji Nakatake, … , Yusaku Nakabeppu, Koh-Hei Sonoda
Shunji Nakatake, … , Yusaku Nakabeppu, Koh-Hei Sonoda
Published September 22, 2016
Citation Information: JCI Insight. 2016;1(15):e87781. https://doi.org/10.1172/jci.insight.87781.
View: Text | PDF

MUTYH promotes oxidative microglial activation and inherited retinal degeneration

  • Text
  • PDF
Abstract

Oxidative stress is implicated in various neurodegenerative disorders, including retinitis pigmentosa (RP), an inherited disease that causes blindness. The biological and cellular mechanisms by which oxidative stress mediates neuronal cell death are largely unknown. In a mouse model of RP (rd10 mice), we show that oxidative DNA damage activates microglia through MutY homolog–mediated (MUYTH-mediated) base excision repair (BER), thereby exacerbating retinal inflammation and degeneration. In the early stage of retinal degeneration, oxidative DNA damage accumulated in the microglia and caused single-strand breaks (SSBs) and poly(ADP-ribose) polymerase activation. In contrast, Mutyh deficiency in rd10 mice prevented SSB formation in microglia, which in turn suppressed microglial activation and photoreceptor cell death. Moreover, Mutyh-deficient primary microglial cells attenuated the polarization to the inflammatory and cytotoxic phenotype under oxidative stress. Thus, MUTYH-mediated BER in oxidative microglial activation may be a novel target to dampen the disease progression in RP and other neurodegenerative disorders that are associated with oxidative stress.

Authors

Shunji Nakatake, Yusuke Murakami, Yasuhiro Ikeda, Noriko Morioka, Takashi Tachibana, Kohta Fujiwara, Noriko Yoshida, Shoji Notomi, Toshio Hisatomi, Shigeo Yoshida, Tatsuro Ishibashi, Yusaku Nakabeppu, Koh-Hei Sonoda

×

Classical dendritic cells mediate fibrosis directly via the retinoic acid pathway in severe eye allergy
Sarah D. Ahadome, … , Virginia L. Calder, Daniel R. Saban
Sarah D. Ahadome, … , Virginia L. Calder, Daniel R. Saban
Published August 4, 2016
Citation Information: JCI Insight. 2016;1(12):e87012. https://doi.org/10.1172/jci.insight.87012.
View: Text | PDF

Classical dendritic cells mediate fibrosis directly via the retinoic acid pathway in severe eye allergy

  • Text
  • PDF
Abstract

Fibrosis is a shared end-stage pathway to lung, liver, and heart failure. In the ocular mucosa (conjunctiva), fibrosis leads to blindness in trachoma, pemphigoid, and allergy. The indirect fibrogenic role of DCs via T cell activation and inflammatory cell recruitment is well documented. However, here we demonstrate that DCs can directly induce fibrosis. In the mouse model of allergic eye disease (AED), classical CD11b+ DCs in the ocular mucosa showed increased activity of aldehyde dehydrogenase (ALDH), the enzyme required for retinoic acid synthesis. In vitro, CD11b+ DC–derived ALDH was associated with 9-cis-retinoic acid ligation to retinoid x receptor (RXR), which induced conjunctival fibroblast activation. In vivo, stimulating RXR led to rapid onset of ocular mucosal fibrosis, whereas inhibiting ALDH activity in DCs or selectively depleting DCs markedly reduced fibrosis. Collectively, these data reveal a profibrotic ALDH-dependent pathway by DCs and uncover a role for DC retinoid metabolism.

Authors

Sarah D. Ahadome, Rose Mathew, Nancy J. Reyes, Priyatham S. Mettu, Scott W. Cousins, Virginia L. Calder, Daniel R. Saban

×

Aldehyde dehydrogenase inhibition blocks mucosal fibrosis in human and mouse ocular scarring
Sarah D. Ahadome, … , Julie T. Daniels, John K. Dart
Sarah D. Ahadome, … , Julie T. Daniels, John K. Dart
Published August 4, 2016
Citation Information: JCI Insight. 2016;1(12):e87001. https://doi.org/10.1172/jci.insight.87001.
View: Text | PDF

Aldehyde dehydrogenase inhibition blocks mucosal fibrosis in human and mouse ocular scarring

  • Text
  • PDF
Abstract

Mucous membrane pemphigoid (MMP) is a systemic mucosal scarring disease, commonly causing blindness, for which there is no antifibrotic therapy. Aldehyde dehydrogenase family 1 (ALDH1) is upregulated in both ocular MMP (OMMP) conjunctiva and cultured fibroblasts. Application of the ALDH metabolite, retinoic acid (RA), to normal human conjunctival fibroblasts in vitro induced a diseased phenotype. Conversely, application of ALDH inhibitors, including disulfiram, to OMMP fibroblasts in vitro restored their functionality to that of normal controls. ALDH1 is also upregulated in the mucosa of the mouse model of scarring allergic eye disease (AED), used here as a surrogate for OMMP, in which topical application of disulfiram decreased fibrosis in vivo. These data suggest that progressive scarring in OMMP results from ALDH/RA fibroblast autoregulation, that the ALDH1 subfamily has a central role in immune-mediated ocular mucosal scarring, and that ALDH inhibition with disulfiram is a potential and readily translatable antifibrotic therapy.

Authors

Sarah D. Ahadome, David J. Abraham, Suryanarayana Rayapureddi, Valerie P. Saw, Daniel R. Saban, Virginia L. Calder, Jill T. Norman, Markella Ponticos, Julie T. Daniels, John K. Dart

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts