Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Ophthalmology

  • 60 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • Next →
A collagen IV-derived peptide disrupts α5β1 integrin and potentiates Ang2-Tie2 signaling
Adam C. Mirando, … , Aleksander S. Popel, Niranjan B. Pandey
Adam C. Mirando, … , Aleksander S. Popel, Niranjan B. Pandey
Published January 22, 2019
Citation Information: JCI Insight. 2019. https://doi.org/10.1172/jci.insight.122043.
View: Text | PDF

A collagen IV-derived peptide disrupts α5β1 integrin and potentiates Ang2-Tie2 signaling

  • Text
  • PDF
Abstract

The angiopoietin (Ang)-Tie2 signaling pathway is essential for maintaining vascular homeostasis and its dysregulation is associated with several diseases. Interactions between Tie2 and α5β1 integrin have emerged as part of this control; however, the mechanism is incompletely understood. AXT107, a collagen IV-derived peptide, has strong anti-permeability activity and has enabled the elucidation of this previously undetermined mechanism. Previously, AXT107 was shown to inhibit VEGFR2 and other growth factor signaling via receptor tyrosine kinase association with specific integrins. AXT107 disrupts α5β1 and stimulates the relocation of Tie2 and α5 to cell junctions. In the presence of Ang2 and AXT107, junctional Tie2 is activated, downstream survival signals are upregulated, F-actin is rearranged to strengthen junctions, and, as a result, endothelial junctional permeability is reduced. These data suggest that α5β1 sequesters Tie2 in non-junctional locations in endothelial cell membranes and that AXT107-induced disruption of α5β1 promotes clustering of Tie2 at junctions and converts Ang2 into a strong agonist, similar to responses observed when Ang1 levels greatly exceed those of Ang2. The potentiation of Tie2 activation by Ang2 even extended in to mouse models in which AXT107 induced Tie2 phosphorylation in a model of hypoxia and inhibited vascular leakage in an Ang2-overexpression transgenic model and an LPS-induced inflammation model. Since Ang2 levels are very high in ischemic diseases, such as diabetic macular edema, neovascular age-related macular degeneration, uveitis, and cancer, targeting α5β1 with AXT107 provides a novel and potentially more effective approach to treat these diseases.

Authors

Adam C. Mirando, Jikui Shen, Raquel Lima e Silva, Zenny Chu, Nicholas Sass, Valeria E. Lorenc, Jordan J. Green, Peter A. Campochiaro, Aleksander S. Popel, Niranjan B. Pandey

×

Inhibition of stromal cell–derived factor-1α/CXCR4 signaling restores the blood-retina barrier in pericyte-deficient mouse retinas
Keisuke Omori, … , Akiyoshi Uemura, Takahisa Murata
Keisuke Omori, … , Akiyoshi Uemura, Takahisa Murata
Published December 6, 2018
Citation Information: JCI Insight. 2018;3(23):e120706. https://doi.org/10.1172/jci.insight.120706.
View: Text | PDF

Inhibition of stromal cell–derived factor-1α/CXCR4 signaling restores the blood-retina barrier in pericyte-deficient mouse retinas

  • Text
  • PDF
Abstract

In diabetic retinopathy (DR), pericyte dropout from capillary walls is believed to cause the breakdown of the blood-retina barrier (BRB), which subsequently leads to vision-threatening retinal edema. While various proinflammatory cytokines and chemokines are upregulated in eyes with DR, their distinct contributions to disease progression remain elusive. Here, we evaluated roles of stromal cell–derived factor-1α (SDF-1α) and its receptor CXCR4 in the BRB breakdown initiated by pericyte deficiency. After inhibition of pericyte recruitment to developing retinal vessels in neonatal mice, endothelial cells (ECs) upregulated the expression of SDF-1α. Administration of CXCR4 antagonists, or EC-specific disruption of the CXCR4 gene, similarly restored the BRB integrity, even in the absence of pericyte coverage. Furthermore, CXCR4 inhibition significantly decreased both the expression levels of proinflammatory genes (P < 0.05) and the infiltration of macrophages (P < 0.05) into pericyte-deficient retinas. Taken together, EC-derived SDF-1α induced by pericyte deficiency exacerbated inflammation through CXCR4 in an autocrine or paracrine manner and thereby induced macrophage infiltration and BRB breakdown. These findings suggest that the SDF-1α/CXCR4 signaling pathway may be a potential therapeutic target in DR.

Authors

Keisuke Omori, Nanae Nagata, Kaori Kurata, Yoko Fukushima, Erika Sekihachi, Nobutaka Fujii, Tomoko Namba-Hamano, Yoshitsugu Takabatake, Marcus Fruttiger, Takashi Nagasawa, Akiyoshi Uemura, Takahisa Murata

×

Impaired monocyte cholesterol clearance initiates age-related retinal degeneration and vision loss
Norimitsu Ban, … , Daniel S. Ory, Rajendra S. Apte
Norimitsu Ban, … , Daniel S. Ory, Rajendra S. Apte
Published September 6, 2018
Citation Information: JCI Insight. 2018;3(17):e120824. https://doi.org/10.1172/jci.insight.120824.
View: Text | PDF

Impaired monocyte cholesterol clearance initiates age-related retinal degeneration and vision loss

  • Text
  • PDF
Abstract

Advanced age-related macular degeneration (AMD), the leading cause of blindness among people over 50 years of age, is characterized by atrophic neurodegeneration or pathologic angiogenesis. Early AMD is characterized by extracellular cholesterol-rich deposits underneath the retinal pigment epithelium (RPE) called drusen or in the subretinal space called subretinal drusenoid deposits (SDD) that drive disease progression. However, mechanisms of drusen and SDD biogenesis remain poorly understood. Although human AMD is characterized by abnormalities in cholesterol homeostasis and shares phenotypic features with atherosclerosis, it is unclear whether systemic immunity or local tissue metabolism regulates this homeostasis. Here, we demonstrate that targeted deletion of macrophage cholesterol ABC transporters A1 (ABCA1) and -G1 (ABCG1) leads to age-associated extracellular cholesterol-rich deposits underneath the neurosensory retina similar to SDD seen in early human AMD. These mice also develop impaired dark adaptation, a cardinal feature of RPE cell dysfunction seen in human AMD patients even before central vision is affected. Subretinal deposits in these mice progressively worsen with age, with concomitant accumulation of cholesterol metabolites including several oxysterols and cholesterol esters causing lipotoxicity that manifests as photoreceptor dysfunction and neurodegeneration. These findings suggest that impaired macrophage cholesterol transport initiates several key elements of early human AMD, demonstrating the importance of systemic immunity and aging in promoting disease manifestation. Polymorphisms in genes involved with cholesterol transport and homeostasis are associated with a significantly higher risk of developing AMD, thus making these studies translationally relevant by identifying potential targets for therapy.

Authors

Norimitsu Ban, Tae Jun Lee, Abdoulaye Sene, Mayur Choudhary, Michael Lekwuwa, Zhenyu Dong, Andrea Santeford, Jonathan B. Lin, Goldis Malek, Daniel S. Ory, Rajendra S. Apte

×

Two-photon imaging of the mammalian retina with ultrafast pulsing laser
Grazyna Palczewska, … , Maciej Wojtkowski, Krzysztof Palczewski
Grazyna Palczewska, … , Maciej Wojtkowski, Krzysztof Palczewski
Published September 6, 2018
Citation Information: JCI Insight. 2018;3(17):e121555. https://doi.org/10.1172/jci.insight.121555.
View: Text | PDF

Two-photon imaging of the mammalian retina with ultrafast pulsing laser

  • Text
  • PDF
Abstract

Noninvasive imaging of visual system components in vivo is critical for understanding the causal mechanisms of retinal diseases and for developing therapies for their treatment. However, ultraviolet light needed to excite endogenous fluorophores that participate in metabolic processes of the retina is highly attenuated by the anterior segment of the human eye. In contrast, 2-photon excitation fluorescence imaging with pulsed infrared light overcomes this obstacle. Reducing retinal exposure to laser radiation remains a major barrier in advancing this technology to studies in humans. To increase fluorescence intensity and reduce the requisite laser power, we modulated ultrashort laser pulses with high-order dispersion compensation and applied sensorless adaptive optics and custom image recovery software and observed an over 300% increase in fluorescence of endogenous retinal fluorophores when laser pulses were shortened from 75 fs to 20 fs. No functional or structural changes to the retina were detected after exposure to 2-photon excitation imaging light with 20-fs pulses. Moreover, wide bandwidth associated with short pulses enables excitation of multiple fluorophores with different absorption spectra and thus can provide information about their relative changes and intracellular distribution. These data constitute a substantial advancement for safe 2-photon fluorescence imaging of the human eye.

Authors

Grazyna Palczewska, Patrycjusz Stremplewski, Susie Suh, Nathan Alexander, David Salom, Zhiqian Dong, Daniel Ruminski, Elliot H. Choi, Avery E. Sears, Timothy S. Kern, Maciej Wojtkowski, Krzysztof Palczewski

×

VEGF/VEGFR2 blockade does not cause retinal atrophy in AMD-relevant models
Da Long, … , Lili Lu, Peter A. Campochiaro
Da Long, … , Lili Lu, Peter A. Campochiaro
Published May 17, 2018
Citation Information: JCI Insight. 2018;3(10):e120231. https://doi.org/10.1172/jci.insight.120231.
View: Text | PDF

VEGF/VEGFR2 blockade does not cause retinal atrophy in AMD-relevant models

  • Text
  • PDF
Abstract

Intraocular injections of VEGF-neutralizing proteins provide tremendous benefits in patients with choroidal neovascularization (NV) due to age-related macular degeneration (AMD), but during treatment some patients develop retinal atrophy. Suggesting that VEGF is a survival factor for retinal neurons, a clinical trial group attributed retinal atrophy to VEGF suppression and cautioned against frequent anti-VEGF injections. This recommendation may contribute to poor outcomes in clinical practice from insufficient treatment. Patients with type 3 choroidal NV have particularly high risk of retinal atrophy, an unexplained observation. Herein we show in mouse models that VEGF signaling does not contribute to photoreceptor survival and functioning: (a) neutralization of VEGFR2 strongly suppresses choroidal NV without compromising photoreceptor function or survival; (b) VEGF does not slow loss of photoreceptor function or death in mice with inherited retinal degeneration, and there is no exacerbation by VEGF suppression; and (c) mice with type 3 choroidal NV develop retinal atrophy due to oxidative damage with no contribution from VEGF suppression. Intraocular injections of VEGF-neutralizing proteins, a highly effective treatment in patients with neovascular AMD, should not be withheld or reduced due to concern that they may contribute to long-term visual loss from retinal atrophy.

Authors

Da Long, Yogita Kanan, Jikui Shen, Sean F. Hackett, Yuanyuan Liu, Zibran Hafiz, Mahmood Khan, Lili Lu, Peter A. Campochiaro

×

Macrophage microRNA-150 promotes pathological angiogenesis as seen in age-related macular degeneration
Jonathan B. Lin, … , Daniel S. Ory, Rajendra S. Apte
Jonathan B. Lin, … , Daniel S. Ory, Rajendra S. Apte
Published April 5, 2018
Citation Information: JCI Insight. 2018;3(7):e120157. https://doi.org/10.1172/jci.insight.120157.
View: Text | PDF

Macrophage microRNA-150 promotes pathological angiogenesis as seen in age-related macular degeneration

  • Text
  • PDF
Abstract

Macrophage aging is pathogenic in diseases of the elderly, including age-related macular degeneration (AMD), a leading cause of blindness in older adults. However, the role of microRNAs, which modulate immune processes, in regulating macrophage dysfunction and thereby promoting age-associated diseases is underexplored. Here, we report that microRNA-150 (miR-150) coordinates transcriptomic changes in aged murine macrophages, especially those associated with aberrant lipid trafficking and metabolism in AMD pathogenesis. Molecular profiling confirmed that aged murine macrophages exhibit dysregulated ceramide and phospholipid profiles compared with young macrophages. Of translational relevance, upregulation of miR-150 in human peripheral blood mononuclear cells was also significantly associated with increased odds of AMD, even after controlling for age. Mechanistically, miR-150 directly targets stearoyl-CoA desaturase-2, which coordinates macrophage-mediated inflammation and pathologic angiogenesis, as seen in AMD, in a VEGF-independent manner. Together, our results implicate miR-150 as pathogenic in AMD and provide potentially novel molecular insights into diseases of aging.

Authors

Jonathan B. Lin, Harsh V. Moolani, Abdoulaye Sene, Rohini Sidhu, Pamela Kell, Joseph B. Lin, Zhenyu Dong, Norimitsu Ban, Daniel S. Ory, Rajendra S. Apte

×

A specific phosphorylation regulates the protective role of αA-crystallin in diabetes
Anne Ruebsam, … , Kevin Schey, Patrice E. Fort
Anne Ruebsam, … , Kevin Schey, Patrice E. Fort
Published February 22, 2018
Citation Information: JCI Insight. 2018;3(4):e97919. https://doi.org/10.1172/jci.insight.97919.
View: Text | PDF

A specific phosphorylation regulates the protective role of αA-crystallin in diabetes

  • Text
  • PDF
Abstract

Neurodegeneration is a central aspect of the early stages of diabetic retinopathy, the primary ocular complication associated with diabetes. While progress has been made to improve the vascular perturbations associated with diabetic retinopathy, there are still no treatment options to counteract the neuroretinal degeneration associated with diabetes. Our previous work suggested that the molecular chaperones α-crystallins could be involved in the pathophysiology of diabetic retinopathy; however, the role and regulation of α-crystallins remained unknown. In the present study, we demonstrated the neuroprotective role of αA-crystallin during diabetes and its regulation by its phosphorylation on residue 148. We further characterized the dual role of αA-crystallin in neurons and glia, its essential role for neuronal survival, and its direct dependence on phosphorylation on this residue. These findings support further evaluation of αA-crystallin as a treatment option to promote neuron survival in diabetic retinopathy and neurodegenerative diseases in general.

Authors

Anne Ruebsam, Jennifer E. Dulle, Angela M. Myers, Dhananjay Sakrikar, Katelyn M. Green, Naheed W. Khan, Kevin Schey, Patrice E. Fort

×

Noninvasive gene delivery to foveal cones for vision restoration
Hanen Khabou, … , José-Alain Sahel, Deniz Dalkara
Hanen Khabou, … , José-Alain Sahel, Deniz Dalkara
Published January 25, 2018
Citation Information: JCI Insight. 2018;3(2):e96029. https://doi.org/10.1172/jci.insight.96029.
View: Text | PDF

Noninvasive gene delivery to foveal cones for vision restoration

  • Text
  • PDF
Abstract

Intraocular injection of adeno-associated viral (AAV) vectors has been an evident route for delivering gene drugs into the retina. However, gaps in our understanding of AAV transduction patterns within the anatomically unique environments of the subretinal and intravitreal space of the primate eye impeded the establishment of noninvasive and efficient gene delivery to foveal cones in the clinic. Here, we establish new vector-promoter combinations to overcome the limitations associated with AAV-mediated cone transduction in the fovea with supporting studies in mouse models, human induced pluripotent stem cell–derived organoids, postmortem human retinal explants, and living macaques. We show that an AAV9 variant provides efficient foveal cone transduction when injected into the subretinal space several millimeters away from the fovea, without detaching this delicate region. An engineered AAV2 variant provides gene delivery to foveal cones with a well-tolerated dose administered intravitreally. Both delivery modalities rely on a cone-specific promoter and result in high-level transgene expression compatible with optogenetic vision restoration. The model systems described here provide insight into the behavior of AAV vectors across species to obtain safety and efficacy needed for gene therapy in neurodegenerative disorders.

Authors

Hanen Khabou, Marcela Garita-Hernandez, Antoine Chaffiol, Sacha Reichman, Céline Jaillard, Elena Brazhnikova, Stéphane Bertin, Valérie Forster, Mélissa Desrosiers, Céline Winckler, Olivier Goureau, Serge Picaud, Jens Duebel, José-Alain Sahel, Deniz Dalkara

×

Retinal de novo lipogenesis coordinates neurotrophic signaling to maintain vision
Rithwick Rajagopal, … , Fong-Fu Hsu, Clay F. Semenkovich
Rithwick Rajagopal, … , Fong-Fu Hsu, Clay F. Semenkovich
Published January 11, 2018
Citation Information: JCI Insight. 2018;3(1):e97076. https://doi.org/10.1172/jci.insight.97076.
View: Text | PDF

Retinal de novo lipogenesis coordinates neurotrophic signaling to maintain vision

  • Text
  • PDF
Abstract

Membrane lipid composition is central to the highly specialized functions of neurological tissues. In the retina, abnormal lipid metabolism causes severe forms of blindness, often through poorly understood neuronal cell death. Here, we demonstrate that deleting the de novo lipogenic enzyme fatty acid synthase (FAS) from the neural retina, but not the vascular retina, results in progressive neurodegeneration and blindness with a temporal pattern resembling rodent models of retinitis pigmentosa. Blindness was not rescued by protection from light-evoked activity; by eating a diet enriched in palmitate, the product of the FAS reaction; or by treatment with the PPARα agonist fenofibrate. Vision loss was due to aberrant synaptic structure, blunted responsiveness to glial-derived neurotrophic factor and ciliary neurotrophic factor, and eventual apoptotic cell loss. This progressive neurodegeneration was associated with decreased membrane cholesterol content, as well as loss of discrete n-3 polyunsaturated fatty acid– and saturated fatty acid–containing phospholipid species within specialized membrane microdomains. Neurotrophic signaling was restored by exogenous cholesterol delivery. These findings implicate de novo lipogenesis in neurotrophin-dependent cell survival by maintaining retinal membrane configuration and lipid composition, and they suggest that ongoing lipogenesis may be required to prevent cell death in many forms of retinopathy.

Authors

Rithwick Rajagopal, Sheng Zhang, Xiaochao Wei, Teresa Doggett, Sangeeta Adak, Jennifer Enright, Vaishali Shah, Guoyu Ling, Shiming Chen, Jun Yoshino, Fong-Fu Hsu, Clay F. Semenkovich

×

Targeting and silencing of rhodopsin by ectopic expression of the transcription factor KLF15
Salvatore Botta, … , Francesca Simonelli, Enrico Maria Surace
Salvatore Botta, … , Francesca Simonelli, Enrico Maria Surace
Published December 21, 2017
Citation Information: JCI Insight. 2017;2(24):e96560. https://doi.org/10.1172/jci.insight.96560.
View: Text | PDF

Targeting and silencing of rhodopsin by ectopic expression of the transcription factor KLF15

  • Text
  • PDF
Abstract

The genome-wide activity of transcription factors (TFs) on multiple regulatory elements precludes their use as gene-specific regulators. Here we show that ectopic expression of a TF in a cell-specific context can be used to silence the expression of a specific gene as a therapeutic approach to regulate gene expression in human disease. We selected the TF Krüppel-like factor 15 (KLF15) based on its putative ability to recognize a specific DNA sequence motif present in the rhodopsin (RHO) promoter and its lack of expression in terminally differentiated rod photoreceptors (the RHO-expressing cells). Adeno-associated virus (AAV) vector–mediated ectopic expression of KLF15 in rod photoreceptors of pigs enables Rho silencing with limited genome-wide transcriptional perturbations. Suppression of a RHO mutant allele by KLF15 corrects the phenotype of a mouse model of retinitis pigmentosa with no observed toxicity. Cell-specific-context conditioning of TF activity may prove a novel mode for somatic gene–targeted manipulation.

Authors

Salvatore Botta, Nicola de Prisco, Elena Marrocco, Mario Renda, Martina Sofia, Fabiola Curion, Maria Laura Bacci, Domenico Ventrella, Cathal Wilson, Carlo Gesualdo, Settimio Rossi, Francesca Simonelli, Enrico Maria Surace

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts