Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Oncology

  • 637 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 57
  • 58
  • 59
  • …
  • 63
  • 64
  • Next →
Addressing metabolic heterogeneity in clear cell renal cell carcinoma with quantitative Dixon MRI
Yue Zhang, Durga Udayakumar, Ling Cai, Zeping Hu, Payal Kapur, Eun-Young Kho, Andrea Pavía-Jiménez, Michael Fulkerson, Alberto Diaz de Leon, Qing Yuan, Ivan E. Dimitrov, Takeshi Yokoo, Jin Ye, Matthew A. Mitsche, Hyeonwoo Kim, Jeffrey G. McDonald, Yin Xi, Ananth J. Madhuranthakam, Durgesh K. Dwivedi, Robert E. Lenkinski, Jeffrey A. Cadeddu, Vitaly Margulis, James Brugarolas, Ralph J. DeBerardinis, Ivan Pedrosa
Yue Zhang, Durga Udayakumar, Ling Cai, Zeping Hu, Payal Kapur, Eun-Young Kho, Andrea Pavía-Jiménez, Michael Fulkerson, Alberto Diaz de Leon, Qing Yuan, Ivan E. Dimitrov, Takeshi Yokoo, Jin Ye, Matthew A. Mitsche, Hyeonwoo Kim, Jeffrey G. McDonald, Yin Xi, Ananth J. Madhuranthakam, Durgesh K. Dwivedi, Robert E. Lenkinski, Jeffrey A. Cadeddu, Vitaly Margulis, James Brugarolas, Ralph J. DeBerardinis, Ivan Pedrosa
View: Text | PDF

Addressing metabolic heterogeneity in clear cell renal cell carcinoma with quantitative Dixon MRI

  • Text
  • PDF
Abstract

BACKGROUND. Dysregulated lipid and glucose metabolism in clear cell renal cell carcinoma (ccRCC) has been implicated in disease progression, and whole tumor tissue–based assessment of these changes is challenged by the tumor heterogeneity. We studied a noninvasive quantitative MRI method that predicts metabolic alterations in the whole tumor. METHODS. We applied Dixon-based MRI for in vivo quantification of lipid accumulation (fat fraction [FF]) in targeted regions of interest of 45 primary ccRCCs and correlated these MRI measures to mass spectrometry–based lipidomics and metabolomics of anatomically colocalized tissue samples isolated from the same tumor after surgery. RESULTS. In vivo tumor FF showed statistically significant (P < 0.0001) positive correlation with histologic fat content (Spearman correlation coefficient, ρ = 0.79), spectrometric triglycerides (ρ = 0.56) and cholesterol (ρ = 0.47); it showed negative correlation with free fatty acids (ρ = –0.44) and phospholipids (ρ = –0.65). We observed both inter- and intratumoral heterogeneity in lipid accumulation within the same tumor grade, whereas most aggressive tumors (International Society of Urological Pathology [ISUP] grade 4) exhibited reduced lipid accumulation. Cellular metabolites in tumors were altered compared with adjacent renal parenchyma. CONCLUSION. Our results support the use of noninvasive quantitative Dixon-based MRI as a biomarker of reprogrammed lipid metabolism in ccRCC, which may serve as a predictor of tumor aggressiveness before surgical intervention. FUNDING. NIH R01CA154475 (YZ, MF, PK, IP), NIH P50CA196516 (IP, JB, RJD, JAC, PK), Welch Foundation I-1832 (JY), and NIH P01HL020948 (JGM).

Authors

Yue Zhang, Durga Udayakumar, Ling Cai, Zeping Hu, Payal Kapur, Eun-Young Kho, Andrea Pavía-Jiménez, Michael Fulkerson, Alberto Diaz de Leon, Qing Yuan, Ivan E. Dimitrov, Takeshi Yokoo, Jin Ye, Matthew A. Mitsche, Hyeonwoo Kim, Jeffrey G. McDonald, Yin Xi, Ananth J. Madhuranthakam, Durgesh K. Dwivedi, Robert E. Lenkinski, Jeffrey A. Cadeddu, Vitaly Margulis, James Brugarolas, Ralph J. DeBerardinis, Ivan Pedrosa

×

Sexual dimorphism in glioma glycolysis underlies sex differences in survival
Joseph E. Ippolito, Aldrin Kay-Yuen Yim, Jingqin Luo, Prakash Chinnaiyan, Joshua B. Rubin
Joseph E. Ippolito, Aldrin Kay-Yuen Yim, Jingqin Luo, Prakash Chinnaiyan, Joshua B. Rubin
View: Text | PDF

Sexual dimorphism in glioma glycolysis underlies sex differences in survival

  • Text
  • PDF
Abstract

The molecular bases for sex differences in cancer remain undefined and how to incorporate them into risk stratification remains undetermined. Given sex differences in metabolism and the inverse correlation between fluorodeoxyglucose (FDG) uptake and survival, we hypothesized that glycolytic phenotyping would improve glioma subtyping. Using retrospectively acquired lower-grade glioma (LGG) transcriptome data from The Cancer Genome Atlas (TCGA), we discovered male-specific decreased survival resulting from glycolytic gene overexpression. Patients within this high-glycolytic group showed significant differences in the presence of key genomic alterations (i.e., 1p/19q codeletion, CIC, EGFR, NF1, PTEN, FUBP1, and IDH mutations) compared with the low-glycolytic group. Although glycolytic stratification defined poor prognostic males independent of grade, histology, TP53, and ATRX mutation status, we unexpectedly found that females with high-glycolytic gene expression and wild-type IDH survived longer than all other wild-type patients. Validation with an independent metabolomics dataset from grade 2 gliomas determined that glycolytic metabolites selectively stratified males and also uncovered a potential sexual dimorphism in pyruvate metabolism. These findings identify a potential synergy between patient sex, tumor metabolism, and genomic alterations in determining outcome for glioma patients.

Authors

Joseph E. Ippolito, Aldrin Kay-Yuen Yim, Jingqin Luo, Prakash Chinnaiyan, Joshua B. Rubin

×

Multiparametric immune profiling in HPV– oral squamous cell cancer
Zipei Feng, Daniel Bethmann, Matthias Kappler, Carmen Ballesteros-Merino, Alexander Eckert, R. Bryan Bell, Allen Cheng, Tuan Bui, Rom Leidner, Walter J. Urba, Kent Johnson, Clifford Hoyt, Carlo B. Bifulco, Juergen Bukur, Claudia Wickenhauser, Barbara Seliger, Bernard A. Fox
Zipei Feng, Daniel Bethmann, Matthias Kappler, Carmen Ballesteros-Merino, Alexander Eckert, R. Bryan Bell, Allen Cheng, Tuan Bui, Rom Leidner, Walter J. Urba, Kent Johnson, Clifford Hoyt, Carlo B. Bifulco, Juergen Bukur, Claudia Wickenhauser, Barbara Seliger, Bernard A. Fox
View: Text | PDF

Multiparametric immune profiling in HPV– oral squamous cell cancer

  • Text
  • PDF
Abstract

Evaluation of T lymphocyte frequency provides prognostic information for patients with oral squamous cell cancer (OSCC). However, the effect of simultaneously evaluating T cell frequency and assessing suppressive elements and defects in antigen-processing machinery (APM) has not been clarified. Simultaneous characterization of CD3+, CD8+, FoxP3+, CD163+, and PD-L1+ cells using multispectral imaging was performed on sections from 119 patients with HPV– OSCC. Expression of β2-microglobulin, MHC class I heavy chain, and large multifunctional peptidase 10 was quantified, and all data were correlated with patient outcome. We found that, consistent with previous reports, high numbers of CD8+ T cells at the invasive margin correlated significantly with prolonged overall survival (OS), while the number of FoxP3+ or PD-L1+ cells did not. Compiling the number of FoxP3+ or PD-L1+ cells within 30 μm of CD8+ T cells identified a significant association with a high number of suppressive elements close to CD8+ T cells and reduced OS. Integrating this information into a cumulative suppression index (CSI) increased correlation with OS. Incorporating tumor expression levels of APM components with CSI further improved prognostic power. This multiparametric immune profiling may be useful for stratifying patients with OSCC for clinical trials.

Authors

Zipei Feng, Daniel Bethmann, Matthias Kappler, Carmen Ballesteros-Merino, Alexander Eckert, R. Bryan Bell, Allen Cheng, Tuan Bui, Rom Leidner, Walter J. Urba, Kent Johnson, Clifford Hoyt, Carlo B. Bifulco, Juergen Bukur, Claudia Wickenhauser, Barbara Seliger, Bernard A. Fox

×

Partially exhausted tumor-infiltrating lymphocytes predict response to combination immunotherapy
Kimberly Loo, Katy K. Tsai, Kelly Mahuron, Jacqueline Liu, Mariela L. Pauli, Priscila M. Sandoval, Adi Nosrati, James Lee, Lawrence Chen, Jimmy Hwang, Lauren S. Levine, Matthew F. Krummel, Alain P. Algazi, Michael D Alvarado, Michael D. Rosenblum, Adil I. Daud
Kimberly Loo, Katy K. Tsai, Kelly Mahuron, Jacqueline Liu, Mariela L. Pauli, Priscila M. Sandoval, Adi Nosrati, James Lee, Lawrence Chen, Jimmy Hwang, Lauren S. Levine, Matthew F. Krummel, Alain P. Algazi, Michael D Alvarado, Michael D. Rosenblum, Adil I. Daud
View: Text | PDF

Partially exhausted tumor-infiltrating lymphocytes predict response to combination immunotherapy

  • Text
  • PDF
Abstract

BACKGROUND. Programmed death 1 (PD-1) inhibition activates partially exhausted cytotoxic T lymphocytes (peCTLs) and induces tumor regression. We previously showed that the peCTL fraction predicts response to anti–PD-1 monotherapy. Here, we sought to correlate peCTL and regulatory T lymphocyte (Treg) levels with response to combination immunotherapy, and with demographic/disease characteristics, in metastatic melanoma patients. METHODS. Pretreatment melanoma samples underwent multiparameter flow cytometric analysis. Patients were treated with anti–PD-1 monotherapy or combination therapy, and responses determined by Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST v1.1) criteria. peCTL and Treg levels across demographic/disease variables were compared. Low versus high peCTL (≤20% vs. >20%) were defined from a previous study. RESULTS. One hundred and two melanoma patients were identified. The peCTL fraction was higher in responders than nonresponders. Low peCTL correlated with female sex and liver metastasis, but not with lactate dehydrogenase (LDH), tumor stage, or age. While overall response rates (ORRs) to anti–PD-1 monotherapy and combination therapy were similar in high-peCTL patients, low-peCTL patients given combination therapy demonstrated higher ORRs than those who received monotherapy. Treg levels were not associated with these factors nor with response. CONCLUSION. In melanoma, pretreatment peCTL fraction is reduced in women and in patients with liver metastasis. In low-peCTL patients, anti–PD-1 combination therapy is associated with significantly higher ORR than anti–PD-1 monotherapy. Fewer tumor-infiltrating peCTLs may be required to achieve response to combination immunotherapy. TRIAL REGISTRATION. UCSF IRB Protocol 138510 FUNDING. NIH DP2-AR068130, K08-AR062064, AR066821, and Burroughs Wellcome CAMS-1010934 (M.D.R.). Amoroso and Cook Fund, and the Parker Institute for Cancer Immunotherapy (A.I.D.).

Authors

Kimberly Loo, Katy K. Tsai, Kelly Mahuron, Jacqueline Liu, Mariela L. Pauli, Priscila M. Sandoval, Adi Nosrati, James Lee, Lawrence Chen, Jimmy Hwang, Lauren S. Levine, Matthew F. Krummel, Alain P. Algazi, Michael D Alvarado, Michael D. Rosenblum, Adil I. Daud

×

Adoptively transferred Vγ9Vδ2 T cells show potent antitumor effects in a preclinical B cell lymphomagenesis model
Nicholas A. Zumwalde, Akshat Sharma, Xuequn Xu, Shidong Ma, Christine L. Schneider, James C. Romero-Masters, Amy W. Hudson, Annette Gendron-Fitzpatrick, Shannon C. Kenney, Jenny E. Gumperz
Nicholas A. Zumwalde, Akshat Sharma, Xuequn Xu, Shidong Ma, Christine L. Schneider, James C. Romero-Masters, Amy W. Hudson, Annette Gendron-Fitzpatrick, Shannon C. Kenney, Jenny E. Gumperz
View: Text | PDF

Adoptively transferred Vγ9Vδ2 T cells show potent antitumor effects in a preclinical B cell lymphomagenesis model

  • Text
  • PDF
Abstract

A central issue for adoptive cellular immunotherapy is overcoming immunosuppressive signals to achieve tumor clearance. While γδ T cells are known to be potent cytolytic effectors that can kill a variety of cancers, it is not clear whether they are inhibited by suppressive ligands expressed in tumor microenvironments. Here, we have used a powerful preclinical model where EBV infection drives the de novo generation of human B cell lymphomas in vivo, and autologous T lymphocytes are held in check by PD-1/CTLA-4–mediated inhibition. We show that a single dose of adoptively transferred Vδ2+ T cells has potent antitumor effects, even in the absence of checkpoint blockade or activating compounds. Vδ2+ T cell immunotherapy given within the first 5 days of EBV infection almost completely prevented the outgrowth of tumors. Vδ2+ T cell immunotherapy given more than 3 weeks after infection (after neoplastic transformation is evident) resulted in a dramatic reduction in tumor burden. The immunotherapeutic Vδ2+ T cells maintained low cell surface expression of PD-1 in vivo, and their recruitment to tumors was followed by a decrease in B cells expressing PD-L1 and PD-L2 inhibitory ligands. These results suggest that adoptively transferred PD-1lo Vδ2+ T cells circumvent the tumor checkpoint environment in vivo.

Authors

Nicholas A. Zumwalde, Akshat Sharma, Xuequn Xu, Shidong Ma, Christine L. Schneider, James C. Romero-Masters, Amy W. Hudson, Annette Gendron-Fitzpatrick, Shannon C. Kenney, Jenny E. Gumperz

×

Pioglitazone-mediated reversal of elevated glucose metabolism in the airway epithelium of mouse lung adenocarcinomas
Donghai Xiong, Jing Pan, Qi Zhang, Eva Szabo, Mark Steven Miller, Ronald A. Lubet, Yian Wang, Ming You
Donghai Xiong, Jing Pan, Qi Zhang, Eva Szabo, Mark Steven Miller, Ronald A. Lubet, Yian Wang, Ming You
View: Text | PDF

Pioglitazone-mediated reversal of elevated glucose metabolism in the airway epithelium of mouse lung adenocarcinomas

  • Text
  • PDF
Abstract

Airway epithelial cells are prone to the damage caused by lung cancer risk factors, such as cigarette smoking. Little is known about surrogate biomarkers in the bronchial airway epithelium that can be used to assess the effect of potential chemoprevention drugs on lung adenocarcinoma formation/progression. Pioglitazone has been suggested as a chemoprevention drug for lung cancer. To study the mechanisms underlying the role of pioglitazone in lung cancer prevention, we performed transcriptome sequencing (RNA-Seq) and found that Kras signaling was repressed by pioglitazone treatment in the airway epithelial cells of mice with lung adenocarcinoma (FDR q = 9.8E-04). It was also found that glucose metabolic pathways were elevated in the airway epithelium of mice with lung adenocarcinomas and inhibited by pioglitazone treatment (FDR q = 0.01). Downregulation of glucose metabolism genes was also observed in lung tumors of mice treated with pioglitazone. The high-risk expression signature of elevated glucose metabolism was associated with poor survival outcome in multiple lung adenocarcinoma patient populations (P values ranging from 1.0E-9 to 5.5E-5). Our results suggest that the role of pioglitazone in preventing lung adenocarcinoma may depend on inhibiting Kras signaling and glucose metabolism, which may serve as biomarkers of agent action in the airway epithelium.

Authors

Donghai Xiong, Jing Pan, Qi Zhang, Eva Szabo, Mark Steven Miller, Ronald A. Lubet, Yian Wang, Ming You

×

Genomic landscape and evolution of metastatic chromophobe renal cell carcinoma
Jozefina Casuscelli, Nils Weinhold, Gunes Gundem, Lu Wang, Emily C. Zabor, Esther Drill, Patricia I. Wang, Gouri J. Nanjangud, Almedina Redzematovic, Amrita M. Nargund, Brandon J. Manley, Maria E. Arcila, Nicholas M. Donin, John C. Cheville, R. Houston Thompson, Allan J. Pantuck, Paul Russo, Emily H. Cheng, William Lee, Satish K. Tickoo, Irina Ostrovnaya, Chad J. Creighton, Elli Papaemmanuil, Venkatraman E. Seshan, A. Ari Hakimi, James J. Hsieh
Jozefina Casuscelli, Nils Weinhold, Gunes Gundem, Lu Wang, Emily C. Zabor, Esther Drill, Patricia I. Wang, Gouri J. Nanjangud, Almedina Redzematovic, Amrita M. Nargund, Brandon J. Manley, Maria E. Arcila, Nicholas M. Donin, John C. Cheville, R. Houston Thompson, Allan J. Pantuck, Paul Russo, Emily H. Cheng, William Lee, Satish K. Tickoo, Irina Ostrovnaya, Chad J. Creighton, Elli Papaemmanuil, Venkatraman E. Seshan, A. Ari Hakimi, James J. Hsieh
View: Text | PDF

Genomic landscape and evolution of metastatic chromophobe renal cell carcinoma

  • Text
  • PDF
Abstract

Chromophobe renal cell carcinoma (chRCC) typically shows ~7 chromosome losses (1, 2, 6, 10, 13, 17, and 21) and ~31 exonic somatic mutations, yet carries ~5%–10% metastatic incidence. Since extensive chromosomal losses can generate proteotoxic stress and compromise cellular proliferation, it is intriguing how chRCC, a tumor with extensive chromosome losses and a low number of somatic mutations, can develop lethal metastases. Genomic features distinguishing metastatic from nonmetastatic chRCC are unknown. An integrated approach, including whole-genome sequencing (WGS), targeted ultradeep cancer gene sequencing, and chromosome analyses (FACETS, OncoScan, and FISH), was performed on 79 chRCC patients including 38 metastatic (M-chRCC) cases. We demonstrate that TP53 mutations (58%), PTEN mutations (24%), and imbalanced chromosome duplication (ICD, duplication of ≥ 3 chromosomes) (25%) were enriched in M-chRCC. Reconstruction of the subclonal composition of paired primary-metastatic chRCC tumors supports the role of TP53, PTEN, and ICD in metastatic evolution. Finally, the presence of these 3 genomic features in primary tumors of both The Cancer Genome Atlas kidney chromophobe (KICH) (n = 64) and M-chRCC (n = 35) cohorts was associated with worse survival. In summary, our study provides genomic insights into the metastatic progression of chRCC and identifies TP53 mutations, PTEN mutations, and ICD as high-risk features.

Authors

Jozefina Casuscelli, Nils Weinhold, Gunes Gundem, Lu Wang, Emily C. Zabor, Esther Drill, Patricia I. Wang, Gouri J. Nanjangud, Almedina Redzematovic, Amrita M. Nargund, Brandon J. Manley, Maria E. Arcila, Nicholas M. Donin, John C. Cheville, R. Houston Thompson, Allan J. Pantuck, Paul Russo, Emily H. Cheng, William Lee, Satish K. Tickoo, Irina Ostrovnaya, Chad J. Creighton, Elli Papaemmanuil, Venkatraman E. Seshan, A. Ari Hakimi, James J. Hsieh

×

Macrophage infiltration and genetic landscape of undifferentiated uterine sarcomas
Joanna Przybyl, Magdalena Kowalewska, Anna Quattrone, Barbara Dewaele, Vanessa Vanspauwen, Sushama Varma, Sujay Vennam, Aaron M. Newman, Michal Swierniak, Elwira Bakuła-Zalewska, Janusz A. Siedlecki, Mariusz Bidzinski, Jan Cools, Matt van de Rijn, Maria Debiec-Rychter
Joanna Przybyl, Magdalena Kowalewska, Anna Quattrone, Barbara Dewaele, Vanessa Vanspauwen, Sushama Varma, Sujay Vennam, Aaron M. Newman, Michal Swierniak, Elwira Bakuła-Zalewska, Janusz A. Siedlecki, Mariusz Bidzinski, Jan Cools, Matt van de Rijn, Maria Debiec-Rychter
View: Text | PDF

Macrophage infiltration and genetic landscape of undifferentiated uterine sarcomas

  • Text
  • PDF
Abstract

Endometrial stromal tumors include translocation-associated low- and high-grade endometrial stromal sarcomas (ESS) and highly malignant undifferentiated uterine sarcomas (UUS). UUS is considered a poorly defined group of aggressive tumors and is often seen as a diagnosis of exclusion after ESS and leiomyosarcoma (LMS) have been ruled out. We performed a comprehensive analysis of gene expression, copy number variation, point mutations, and immune cell infiltrates in the largest series to date of all major types of uterine sarcomas to shed light on the biology of UUS and to identify potential novel therapeutic targets. We show that UUS tumors have a distinct molecular profile from LMS and ESS. Gene expression and immunohistochemical analyses revealed the presence of high numbers of tumor-associated macrophages (TAMs) in UUS, which makes UUS patients suitable candidates for therapies targeting TAMs. Our results show a high genomic instability of UUS and downregulation of several TP53-mediated tumor suppressor genes, such as NDN, CDH11, and NDRG4. Moreover, we demonstrate that UUS carry somatic mutations in several oncogenes and tumor suppressor genes implicated in RAS/PI3K/AKT/mTOR, ERBB3, and Hedgehog signaling.

Authors

Joanna Przybyl, Magdalena Kowalewska, Anna Quattrone, Barbara Dewaele, Vanessa Vanspauwen, Sushama Varma, Sujay Vennam, Aaron M. Newman, Michal Swierniak, Elwira Bakuła-Zalewska, Janusz A. Siedlecki, Mariusz Bidzinski, Jan Cools, Matt van de Rijn, Maria Debiec-Rychter

×

CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer
Chunyan Gu-Trantien, Edoardo Migliori, Laurence Buisseret, Alexandre de Wind, Sylvain Brohée, Soizic Garaud, Grégory Noël, Luan Dang C.V., Jean-Nicolas Lodewyckx, Céline Naveaux, Hugues Duvillier, Stanislas Goriely, Denis Larsimont, Karen Willard-Gallo
Chunyan Gu-Trantien, Edoardo Migliori, Laurence Buisseret, Alexandre de Wind, Sylvain Brohée, Soizic Garaud, Grégory Noël, Luan Dang C.V., Jean-Nicolas Lodewyckx, Céline Naveaux, Hugues Duvillier, Stanislas Goriely, Denis Larsimont, Karen Willard-Gallo
View: Text | PDF

CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer

  • Text
  • PDF
Abstract

T follicular helper cells (TFH cells) are important regulators of antigen-specific B cell responses. The B cell chemoattractant CXCL13 has recently been linked with TFH cell infiltration and improved survival in human cancer. Although human TFH cells can produce CXCL13, their immune functions are currently unknown. This study presents data from human breast cancer, advocating a role for tumor-infiltrating CXCL13-producing (CXCR5–) TFH cells, here named TFHX13 cells, in promoting local memory B cell differentiation. TFHX13 cells potentially trigger tertiary lymphoid structure formation and thereby generate germinal center B cell responses at the tumor site. Follicular DCs are not potent CXCL13 producers in breast tumor tissues. We used the TFH cell markers PD-1 and ICOS to identify distinct effector and regulatory CD4+ T cell subpopulations in breast tumors. TFHX13 cells are an important component of the PD-1hiICOSint effector subpopulation and coexpanded with PD-1hiICOSintFOXP3hi Tregs. IL2 deprivation induces CXCL13 expression in vitro with a synergistic effect from TGFβ1, providing insight into TFHX13 cell differentiation in response to Treg accumulation, similar to conventional TFH cell responses. Our data suggest that human TFHX13 cell differentiation may be a key factor in converting Treg-mediated immune suppression to de novo activation of adaptive antitumor humoral responses in the chronic inflammatory breast cancer microenvironment.

Authors

Chunyan Gu-Trantien, Edoardo Migliori, Laurence Buisseret, Alexandre de Wind, Sylvain Brohée, Soizic Garaud, Grégory Noël, Luan Dang C.V., Jean-Nicolas Lodewyckx, Céline Naveaux, Hugues Duvillier, Stanislas Goriely, Denis Larsimont, Karen Willard-Gallo

×

Insulin supplementation attenuates cancer-induced cardiomyopathy and slows tumor disease progression
James T. Thackeray, Stefan Pietzsch, Britta Stapel, Melanie Ricke-Hoch, Chun-Wei Lee, Jens P. Bankstahl, Michaela Scherr, Jörg Heineke, Gesine Scharf, Arash Haghikia, Frank M. Bengel, Denise Hilfiker-Kleiner
James T. Thackeray, Stefan Pietzsch, Britta Stapel, Melanie Ricke-Hoch, Chun-Wei Lee, Jens P. Bankstahl, Michaela Scherr, Jörg Heineke, Gesine Scharf, Arash Haghikia, Frank M. Bengel, Denise Hilfiker-Kleiner
View: Text | PDF

Insulin supplementation attenuates cancer-induced cardiomyopathy and slows tumor disease progression

  • Text
  • PDF
Abstract

Advanced cancer induces fundamental changes in metabolism and promotes cardiac atrophy and heart failure. We discovered systemic insulin deficiency in cachectic cancer patients. Similarly, mice with advanced B16F10 melanoma (B16F10-TM) or colon 26 carcinoma (C26-TM) displayed decreased systemic insulin associated with marked cardiac atrophy, metabolic impairment, and function. B16F10 and C26 tumors decrease systemic insulin via high glucose consumption, lowering pancreatic insulin production and producing insulin-degrading enzyme. As tumor cells consume glucose in an insulin-independent manner, they shift glucose away from cardiomyocytes. Since cardiomyocytes in both tumor models remained insulin responsive, low-dose insulin supplementation by subcutaneous implantation of insulin-releasing pellets improved cardiac glucose uptake, atrophy, and function, with no adverse side effects. In addition, by redirecting glucose to the heart in addition to other organs, the systemic insulin treatment lowered glucose usage by the tumor and thereby decreased tumor growth and volume. Insulin corrected the cancer-induced reduction in cardiac Akt activation and the subsequent overactivation of the proteasome and autophagy. Thus, cancer-induced systemic insulin depletion contributes to cardiac wasting and failure and may promote tumor growth. Low-dose insulin supplementation attenuates these processes and may be supportive in cardio-oncologic treatment concepts.

Authors

James T. Thackeray, Stefan Pietzsch, Britta Stapel, Melanie Ricke-Hoch, Chun-Wei Lee, Jens P. Bankstahl, Michaela Scherr, Jörg Heineke, Gesine Scharf, Arash Haghikia, Frank M. Bengel, Denise Hilfiker-Kleiner

×
  • ← Previous
  • 1
  • 2
  • …
  • 57
  • 58
  • 59
  • …
  • 63
  • 64
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts