ICOS costimulation generates Th17 cells with durable memory responses to tumor. Herein, we found that ICOS induces PI3K/p110δ/Akt and Wnt/β-catenin pathways in Th17 cells. Coinhibiting PI3Kδ and β-catenin altered the biological fate of Th17 cells. Th17 cells inhibited of both pathways expressed less RORγt, which, in turn, reduced their ability to secrete IL-17. Unexpectedly, these cells were more effective (than uninhibited cells) at regressing tumor when infused into mice, leading to long-term curative responses. PI3Kδ inhibition expanded precursor Th17 cells with a central memory phenotype that expressed nominal regulatory properties (low FoxP3), while β-catenin inhibition enhanced Th17 multifunctionality in vivo. Remarkably, upon TCR restimulation, RORγt and IL-17 rebounded in Th17 cells treated with PI3Kδ and β-catenin inhibitors. Moreover, these cells regained β-catenin, Tcf7, and Akt expression, licensing them to secrete heightened IL-2, persist, and eradicate solid tumors without help from endogenous NK and CD8 T cells. This finding shines a light on ways to repurpose FDA-approved drugs to augment T cell–based cancer immunotherapies.
Kinga Majchrzak, Michelle H. Nelson, Jacob S. Bowers, Stefanie R. Bailey, Megan M. Wyatt, John M. Wrangle, Mark P. Rubinstein, Juan C. Varela, Zihai Li, Richard A. Himes, Sherine S.L. Chan, Chrystal M. Paulos
Vivek Subbiah, Muhammad Rizwan Khawaja, David S. Hong, Behrang Amini, Jiang Yungfang, Hui Liu, Adrienne Johnson, Alexa B. Schrock, Siraj M. Ali, James X. Sun, David Fabrizio, Sarina Piha-Paul, Siqing Fu, Apostolia M. Tsimberidou, Aung Naing, Filip Janku, Daniel D. Karp, Michael Overman, Cathy Eng, Scott Kopetz, Funda Meric-Bernstam, Gerald S. Falchook
Women diagnosed with breast cancer within 5 years of childbirth have poorer prognosis than nulliparous or pregnant women. Weaning-induced breast involution is implicated, as the collagen-rich, immunosuppressive microenvironment of the involuting mammary gland is tumor promotional in mice. To investigate the role of mammary fibroblasts, isolated mammary PDGFRα+ cells from nulliparous and postweaning mice were assessed for activation phenotype and protumorigenic function. Fibroblast activation during involution was evident by increased expression of fibrillar collagens, lysyl oxidase,
Qiuchen Guo, Jessica Minnier, Julja Burchard, Kami Chiotti, Paul Spellman, Pepper Schedin
Diffuse large B cell lymphoma (DLBCL) frequently harbors genetic alterations that activate the B cell receptor (BCR) and TLR pathways, which converge to activate NF-κB. While selective inhibition of BTK with ibrutinib causes clinical responses in relapsed DLBCL patients, most responses are partial and of a short duration. Here, we demonstrated that MyD88 silencing enhanced ibrutinib efficacy in DLBCL cells harboring MyD88 L265P mutations. Chemical downregulation of MyD88 expression with HDAC inhibitors also synergized with ibrutinib. We demonstrate that HDAC inhibitor regulation of MyD88 expression is mediated by STAT3. In turn, STAT3 silencing caused a decrease in MyD88 mRNA and protein levels, and enhanced the ibrutinib antilymphoma effect in MyD88 mutant DLBCL cells. Induced mutations in the STAT3 binding site in the MyD88 promotor region was associated with a decrease in MyD88 transcriptional activity. We also demonstrate that treatment with the HDAC inhibitor panobinostat decreased phosphorylated STAT3 binding to the MyD88 promotor. Accordingly, combined treatment with panobinostat and ibrutinib resulted in enhanced inhibition of NF-κB activity and caused regression of DLBCL xenografts. Our data provide a mechanistic rationale for combining HDAC inhibitors and ibrutinib for the treatment of DLBCL.
Patrizia Mondello, Elliott J. Brea, Elisa De Stanchina, Eneda Toska, Aaron Y. Chang, Myles Fennell, Venkatraman Seshan, Ralph Garippa, David A. Scheinberg, José Baselga, Hans-Guido Wendel, Anas Younes
Focal therapies play an important role in the treatment of cancers where palliation is desired, local control is needed, or surgical resection is not feasible. Pairing immunotherapy with such focal treatments is particularly attractive; however, there is emerging evidence that focal therapy can have a positive or negative impact on the efficacy of immunotherapy. Thermal ablation is an appealing modality to pair with such protocols, as tumors can be rapidly debulked (cell death occurring within minutes to hours), tumor antigens can be released locally, and treatment can be conducted and repeated without the concerns of radiation-based therapies. In a syngeneic model of epithelial cancer, we found that 7 days of immunotherapy (TLR9 agonist and checkpoint blockade), prior to thermal ablation, reduced macrophages and myeloid-derived suppressor cells and enhanced IFN-γ–producing CD8+ T cells, the M1 macrophage fraction, and PD-L1 expression on CD45+ cells. Continued treatment with immunotherapy alone or with immunotherapy combined with ablation (primed ablation) then resulted in a complete response in 80% of treated mice at day 90, and primed ablation expanded CD8+ T cells as compared with all control groups. When the tumor burden was increased by implantation of 3 orthotopic tumors, successive primed ablation of 2 discrete lesions resulted in survival of 60% of treated mice as compared with 25% of mice treated with immunotherapy alone. Alternatively, when immunotherapy was begun immediately after thermal ablation, the abscopal effect was diminished and none of the mice within the cohort exhibited a complete response. In summary, we found that immunotherapy begun before ablation can be curative and can enhance efficacy in the presence of a high tumor burden. Two mechanisms have potential to impact the efficacy of immunotherapy when begun immediately after thermal ablation: mechanical changes in the tumor microenvironment and inflammatory-mediated changes in immune phenotype.
Matthew T. Silvestrini, Elizabeth S. Ingham, Lisa M. Mahakian, Azadeh Kheirolomoom, Yu Liu, Brett Z. Fite, Sarah M. Tam, Samantha T. Tucci, Katherine D. Watson, Andrew W. Wong, Arta M. Monjazeb, Neil E. Hubbard, William J. Murphy, Alexander D. Borowsky, Katherine W. Ferrara
Parathyroid carcinoma (PC) is an extremely rare malignancy lacking effective therapeutic intervention. We generated and analyzed whole-exome sequencing data from 17 patients to identify somatic and germline genetic alterations. A panel of selected genes was sequenced in a 7-tumor expansion cohort. We show that 47% (8 of 17) of the tumors harbor somatic mutations in the
Chetanya Pandya, Andrew V. Uzilov, Justin Bellizzi, Chun Yee Lau, Aye S. Moe, Maya Strahl, Wissam Hamou, Leah C. Newman, Marc Y. Fink, Yevgeniy Antipin, Willie Yu, Mark Stevenson, Branca M. Cavaco, Bin T. Teh, Rajesh V. Thakker, Hans Morreau, Eric E. Schadt, Robert Sebra, Shuyu D. Li, Andrew Arnold, Rong Chen
Julie E. Bauman, Umamaheswar Duvvuri, William E. Gooding, Tanya J. Rath, Neil D. Gross, John Song, Antonio Jimeno, Wendell G. Yarbrough, Faye M. Johnson, Lin Wang, Simion Chiosea, Malabika Sen, Jason Kass, Jonas T. Johnson, Robert L. Ferris, Seungwon Kim, Fred R. Hirsch, Kimberly Ellison, John T. Flaherty, Gordon B. Mills, Jennifer R. Grandis
Metastasis suppressors are key regulators of tumor growth, invasion, and metastases. Loss of metastasis suppressors has been associated with aggressive tumor behaviors and metastatic progression. We previously showed that regulator of calcineurin 1, isoform 4 (RCAN1-4) was upregulated by the KiSS1 metastatic suppression pathway and could inhibit cell motility when overexpressed in cancer cells. To test the effects of endogenous RCAN1-4 loss on thyroid cancer in vivo, we developed RCAN1-4 knockdown stable cells. Subcutaneous xenograft models demonstrated that RCAN1-4 knockdown promotes tumor growth. Intravenous metastasis models demonstrated that RCAN1-4 loss promotes tumor metastases to the lungs and their subsequent growth. Finally, stable induction of RCAN1-4 expression reduced thyroid cancer cell growth and invasion. Microarray analysis predicted that nuclear factor, erythroid 2-like 3 (NFE2L3) was a pivotal downstream effector of RCAN1-4. NFE2L3 overexpression was shown to be necessary for RCAN1-4–mediated enhanced growth and invasiveness and NEF2L3 overexpression independently increased cell invasion. In human samples, NFE2L3 was overexpressed in TCGA thyroid cancer samples versus normal tissues and NFE2L3 overexpression was demonstrated in distant metastasis samples from thyroid cancer patients. In conclusion, we provide the first evidence to our knowledge that RCAN1-4 is a growth and metastasis suppressor in vivo and that it functions in part through NFE2L3.
Chaojie Wang, Motoyasu Saji, Steven E. Justiniano, Adlina Mohd Yusof, Xiaoli Zhang, Lianbo Yu, Soledad Fernández, Paul Wakely Jr., Krista La Perle, Hiroshi Nakanishi, Neal Pohlman, Matthew D. Ringel
Loss of LKB1 activity is prevalent in
Melissa Gilbert-Ross, Jessica Konen, Junghui Koo, John Shupe, Brian S. Robinson, Walter Guy Wiles IV, Chunzi Huang, W. David Martin, Madhusmita Behera, Geoffrey H. Smith, Charles E. Hill, Michael R. Rossi, Gabriel L. Sica, Manali Rupji, Zhengjia Chen, Jeanne Kowalski, Andrea L. Kasinski, Suresh S. Ramalingam, Haian Fu, Fadlo R. Khuri, Wei Zhou, Adam I. Marcus
Adoptive immunotherapy for solid tumors relies on infusing large numbers of T cells to mediate successful antitumor responses in patients. While long-term rapid-expansion protocols (REPs) produce sufficient numbers of CD8+ T cells for treatment, they also cause decline in the cell’s therapeutic fitness. In contrast, we discovered that IL-17–producing CD4+ T cells (Th17 cells) do not require REPs to expand 5,000-fold over 3 weeks. Also, unlike Th1 cells, Th17 cells do not exhibit hallmarks of senescence or apoptosis, retaining robust antitumor efficacy in vivo. Three-week-expanded Th17 cells eliminated melanoma as effectively as Th17 cells expanded for 1 week when infused in equal numbers into mice. However, treating mice with large recalcitrant tumors required the infusion of all cells generated after 2 or 3 weeks of expansion, while the cell yield obtained after 1-week expansion was insufficient. Long-term-expanded Th17 cells also protected mice from tumor rechallenge including lung metastasis. Importantly, 2-week-expanded human chimeric antigen receptor–positive (CAR+) Th17 cells also retained their ability to regress human mesothelioma, while CAR+ Th1 cells did not. Our results indicate that tumor-reactive Th17 cells are an effective cell therapy for cancer, remaining uncompromised when expanded for a long duration owing to their resistance to senescence.
Jacob S. Bowers, Michelle H. Nelson, Kinga Majchrzak, Stefanie R. Bailey, Baerbel Rohrer, Andrew D.M. Kaiser, Carl Atkinson, Luca Gattinoni, Chrystal M. Paulos
No posts were found with this tag.