Environmental exposures pose a significant threat to human health. However, it is often difficult to study toxicological mechanisms in human subjects due to ethical concerns. Plant-derived aristolochic acids are among the most potent nephrotoxins and carcinogens discovered to date, yet the mechanism of bioactivation in humans remains poorly understood. Microphysiological systems (organs-on-chips) provide an approach to examining the complex, species-specific toxicological effects of pharmaceutical and environmental chemicals using human cells. We microfluidically linked a kidney-on-a-chip with a liver-on-a-chip to determine the mechanisms of bioactivation and transport of aristolochic acid I (AA-I), an established nephrotoxin and human carcinogen. We demonstrate that human hepatocyte-specific metabolism of AA-I substantially increases its cytotoxicity toward human kidney proximal tubular epithelial cells, including formation of aristolactam adducts and release of kidney injury biomarkers. Hepatic biotransformation of AA-I to a nephrotoxic metabolite involves nitroreduction, followed by sulfate conjugation. Here, we identify, in a human tissue-based system, that the sulfate conjugate of the hepatic NQO1-generated aristolactam product of AA-I (AL-I-NOSO3) is the nephrotoxic form of AA-I. This conjugate can be transported out of liver via MRP membrane transporters and then actively transported into kidney tissue via one or more organic anionic membrane transporters. This integrated microphysiological system provides an ex vivo approach for investigating organ-organ interactions, whereby the metabolism of a drug or other xenobiotic by one tissue may influence its toxicity toward another, and represents an experimental approach for studying chemical toxicity related to environmental and other toxic exposures.
Shih-Yu Chang, Elijah J. Weber, Viktoriya S. Sidorenko, Alenka Chapron, Catherine K. Yeung, Chunying Gao, Qingcheng Mao, Danny Shen, Joanne Wang, Thomas A. Rosenquist, Kathleen G. Dickman, Thomas Neumann, Arthur P. Grollman, Edward J. Kelly, Jonathan Himmelfarb, David L. Eaton
The efficacy of B cell depletion therapies in diseases such as nephrotic syndrome and rheumatoid arthritis suggests a broader role in B cells in human disease than previously recognized. In some of these diseases, such as the minimal change disease subtype of nephrotic syndrome, pathogenic antibodies and immune complexes are not involved. We hypothesized that B cells, activated in the kidney, might produce cytokines capable of directly inducing cell injury and proteinuria. To directly test our hypothesis, we targeted a model antigen to the kidney glomerulus and showed that transfer of antigen-specific B cells could induce glomerular injury and proteinuria. This effect was mediated by IL-4, as transfer of IL-4–deficient B cells did not induce proteinuria. Overexpression of IL-4 in mice was sufficient to induce kidney injury and proteinuria and could be attenuated by JAK kinase inhibitors. Since IL-4 is a specific activator of STAT6, we analyzed kidney biopsies and demonstrated STAT6 activation in up to 1 of 3 of minimal change disease patients, suggesting IL-4 or IL-13 exposure in these patients. These data suggest that the role of B cells in nephrotic syndrome could be mediated by cytokines.
Alfred H.J. Kim, Jun-Jae Chung, Shreeram Akilesh, Ania Koziell, Sanjay Jain, Jeffrey B. Hodgin, Mark J. Miller, Thaddeus S. Stappenbeck, Jeffrey H. Miner, Andrey S. Shaw
Klotho is a renal protein involved in phosphate homeostasis, which is downregulated in renal disease. It has long been considered an antiaging factor. Two Klotho gene transcripts are thought to encode membrane-bound and secreted Klotho. Indeed, soluble Klotho is detectable in bodily fluids, but the relative contributions of Klotho secretion and of membrane-bound Klotho shedding are unknown. Recent advances in RNA surveillance reveal that premature termination codons, as present in alternative Klotho mRNA (for secreted Klotho), prime mRNAs for degradation by nonsense-mediated mRNA decay (NMD). Disruption of NMD led to accumulation of alternative Klotho mRNA, indicative of normally continuous degradation. RNA IP for NMD core factor UPF1 resulted in enrichment for alternative Klotho mRNA, which was also not associated with polysomes, indicating no active protein translation. Alternative Klotho mRNA transcripts colocalized with some P bodies, where NMD transcripts are degraded. Moreover, we could not detect secreted Klotho in vitro. These results suggest that soluble Klotho is likely cleaved membrane-bound Klotho only. Furthermore, we found that, especially in acute kidney injury, splicing of the 2 mRNA transcripts is dysregulated, which was recapitulated by various noxious stimuli in vitro. This likely constitutes a novel mechanism resulting in the downregulation of membrane-bound Klotho.
Rik Mencke, Geert Harms, Jill Moser, Matijs van Meurs, Arjan Diepstra, Henri G. Leuvenink, Jan-Luuk Hillebrands
It has been suggested that low nephron number contributes to glomerular hypertension and hyperperfusion injury in progressive chronic kidney disease (CKD). The incidence of CKD in Japan is among the highest in the world, but the reasons remain unclear. We estimated total nephron (glomerular) number (NglomTOTAL) as well as numbers of nonsclerosed (NglomNSG) and globally sclerosed glomeruli (NglomGSG), and the mean volume of nonsclerosed glomeruli (VglomNSG) in Japanese normotensive, hypertensive, and CKD subjects and investigated associations between these parameters and estimated glomerular filtration rate (eGFR). Autopsy kidneys from age-matched Japanese men (9 normotensives, 9 hypertensives, 9 CKD) had nephron number and VglomNSG estimated using disector/fractionator stereology. Subject eGFR, single-nephron eGFR (SNeGFR), and the ratio SNeGFR/VglomNSG were calculated. NglomNSG in Japanese with hypertension (392,108 ± 87,605; P < 0.001) and CKD (268,043 ± 106,968; P < 0.001) was less than in normotensives (640,399 ± 160,016). eGFR was directly correlated with NglomNSG (r = 0.70, P < 0.001) and inversely correlated with VglomNSG (r = –0.53, P < 0.01). SNeGFR was higher in hypertensives than normotensives (P = 0.03), but was similar in normotensives and CKD, while the ratio SNeGFR/VglomNSG was similar in normotensives and hypertensives but markedly reduced in CKD. Nephron number in Japanese with hypertension or CKD was low. This results in a higher SNeGFR in hypertensives compared with normotensive and CKD subjects, but lowered SNeGFR/VglomNSG in CKD subjects, suggesting that changes in GFR are accommodated by glomerular hypertrophy rather than glomerular hypertension. These findings suggest glomerular hypertrophy is a dominant factor in maintenance of GFR under conditions of low nephron number.
Go Kanzaki, Victor G. Puelles, Luise A. Cullen-McEwen, Wendy E. Hoy, Yusuke Okabayashi, Nobuo Tsuboi, Akira Shimizu, Kate M. Denton, Michael D. Hughson, Takashi Yokoo, John F. Bertram
Supplementing diets with high potassium helps reduce hypertension in humans. Inwardly rectifying K+ channels Kir4.1 (Kcnj10) and Kir5.1 (Kcnj16) are highly expressed in the basolateral membrane of distal renal tubules and contribute to Na+ reabsorption and K+ secretion through the direct control of transepithelial voltage. To define the importance of Kir5.1 in blood pressure control under conditions of salt-induced hypertension, we generated a Kcnj16 knockout in Dahl salt-sensitive (SS) rats (SSKcnj16–/–). SSKcnj16–/– rats exhibited hypokalemia and reduced blood pressure, and when fed a high-salt diet (4% NaCl), experienced 100% mortality within a few days triggered by salt wasting and severe hypokalemia. Electrophysiological recordings of basolateral K+ channels in the collecting ducts isolated from SSKcnj16–/– rats revealed activity of only homomeric Kir4.1 channels. Kir4.1 expression was upregulated in SSKcnj16–/– rats, but the protein was predominantly localized in the cytosol in SSKcnj16–/– rats. Benzamil, but not hydrochlorothiazide or furosemide, rescued this phenotype from mortality on a high-salt diet. Supplementation of high-salt diet with increased potassium (2% KCl) prevented mortality in SSKcnj16–/– rats and prevented or mitigated hypertension in SSKcnj16–/– or control SS rats, respectively. Our results demonstrate that Kir5.1 channels are key regulators of renal salt handling in SS hypertension.
Oleg Palygin, Vladislav Levchenko, Daria V. Ilatovskaya, Tengis S. Pavlov, Oleh M. Pochynyuk, Howard J. Jacob, Aron M. Geurts, Matthew R. Hodges, Alexander Staruschenko
Though an acute kidney injury (AKI) episode is associated with an increased risk of chronic kidney disease (CKD), the mechanisms determining the transition from acute to irreversible chronic injury are not well understood. To extend our understanding of renal repair, and its limits, we performed a detailed molecular characterization of a murine ischemia/reperfusion injury (IRI) model for 12 months after injury. Together, the data comprising RNA-sequencing (RNA-seq) analysis at multiple time points, histological studies, and molecular and cellular characterization of targeted gene activity provide a comprehensive profile of injury, repair, and long-term maladaptive responses following IRI. Tubular atrophy, interstitial fibrosis, inflammation, and development of multiple renal cysts were major long-term outcomes of IRI. Progressive proximal tubular injury tracks with de novo activation of multiple Krt genes, including Krt20, a biomarker of renal tubule injury. RNA-seq analysis highlights a cascade of temporal-specific gene expression patterns related to tubular injury/repair, fibrosis, and innate and adaptive immunity. Intersection of these data with human kidney transplant expression profiles identified overlapping gene expression signatures correlating with different stages of the murine IRI response. The comprehensive characterization of incomplete recovery after ischemic AKI provides a valuable resource for determining the underlying pathophysiology of human CKD.
Jing Liu, Sanjeev Kumar, Egor Dolzhenko, Gregory F. Alvarado, Jinjin Guo, Can Lu, Yibu Chen, Meng Li, Mark C. Dessing, Riana K. Parvez, Pietro E. Cippà, A. Michaela Krautzberger, Gohar Saribekyan, Andrew D. Smith, Andrew P. McMahon
The architectural integrity of tissues requires complex interactions, both between cells and between cells and the extracellular matrix. Fundamental to cell and tissue homeostasis are the specific mechanical forces conveyed by the actomyosin cytoskeleton. Here we used super-resolution imaging methods to visualize the actin cytoskeleton in the kidney glomerulus, an organized collection of capillaries that filters the blood to make the primary urine. Our analysis of both mouse and human glomeruli reveals a network of myosin IIA–containing contractile actin cables within podocyte cell bodies and major processes at the outer aspects of the glomerular tuft. These likely exert force on an underlying network of myosin IIA–negative, noncontractile actin fibers present within podocyte foot processes that function to both anchor the cells to the glomerular basement membrane and stabilize the slit diaphragm against the pressure of fluid flow. After injuries that disrupt the kidney filtration barrier and cause foot process effacement, the podocyte’s contractile actomyosin network relocates to the basolateral surface of the cell, manifesting as sarcomere-like structures juxtaposed to the basement membrane. Our findings suggest a new model of the podocyte actin cytoskeleton in health and disease and suggest the existence of novel mechanisms that regulate podocyte architecture.
Hani Y. Suleiman, Robyn Roth, Sanjay Jain, John E. Heuser, Andrey S. Shaw, Jeffrey H. Miner
APOL1 variants in African populations mediate resistance to trypanosomal infection but increase risk for kidney diseases through unknown mechanisms. APOL1 is expressed in glomerular podocytes and does not vary with underlying kidney disease diagnoses or APOL1 genotypes, suggesting that the kidney disease–associated variants dysregulate its function rather than its localization or abundance. Structural homology searches identified vesicle-associated membrane protein 8 (VAMP8) as an APOL1 protein interactor. VAMP8 colocalizes with APOL1 in the podocyte, and the APOL1:VAMP8 interaction was confirmed biochemically and with surface plasmon resonance. APOL1 variants attenuate this interaction. Computational modeling of APOL1’s 3-dimensional structure, followed by molecular dynamics simulations, revealed increased motion of the C-terminal domain of reference APOL1 compared with either variant, suggesting that the variants stabilize a closed or autoinhibited state that diminishes protein interactions with VAMP8. Changes in ellipticity with increasing urea concentrations, as assessed by circular dichroism spectroscopy, showed higher conformational stability of the C-terminal helix of the variants compared with the reference protein. These results suggest that reference APOL1 interacts with VAMP8-coated vesicles, a process attenuated by variant-induced reduction in local dynamics of the C-terminal. Disordered vesicular trafficking in the podocyte may cause injury and progressive chronic kidney diseases in susceptible African Americans subjects.
Sethu M. Madhavan, John F. O’Toole, Martha Konieczkowski, Laura Barisoni, David B. Thomas, Santhi Ganesan, Leslie A. Bruggeman, Matthias Buck, John R. Sedor
Inherited and acquired mitochondrial defects have been associated with podocyte dysfunction and chronic kidney disease (CKD). Peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α) is one of the main transcriptional regulators of mitochondrial biogenesis and function. We hypothesized that increasing PGC1α expression in podocytes could protect from CKD. We found that PGC1α and mitochondrial transcript levels are lower in podocytes of patients and mouse models with diabetic kidney disease (DKD). To increase PGC1α expression, podocyte-specific inducible PGC1α-transgenic mice were generated by crossing nephrin-rtTA mice with tetO-Ppargc1a animals. Transgene induction resulted in albuminuria and glomerulosclerosis in a dose-dependent manner. Expression of PGC1α in podocytes increased mitochondrial biogenesis and maximal respiratory capacity. PGC1α also shifted podocytes towards fatty acid usage from their baseline glucose preference. RNA sequencing analysis indicated that PGC1α induced podocyte proliferation. Histological lesions of mice with podocyte-specific PGC1α expression resembled collapsing focal segmental glomerular sclerosis. In conclusion, decreased podocyte PGC1α expression and mitochondrial content is a consistent feature of DKD, but excessive PGC1α alters mitochondrial properties and induces podocyte proliferation and dedifferentiation, indicating that there is likely a narrow therapeutic window for PGC1α levels in podocytes.
Szu-Yuan Li, Jihwan Park, Chengxiang Qiu, Seung Hyeok Han, Matthew B. Palmer, Zoltan Arany, Katalin Susztak
Conventional histologic diagnosis of rejection in kidney transplants has limited repeatability due to its inherent requirement for subjective assessment of lesions, in a rule-based system that does not acknowledge diagnostic uncertainty. Molecular phenotyping affords opportunities for increased precision and improved disease classification to address the limitations of conventional histologic diagnostic systems and quantify levels of uncertainty. Microarray data from 1,208 kidney transplant biopsies were collected prospectively from 13 centers. Cross-validated classifier scores predicting the presence of antibody-mediated rejection (ABMR), T cell–mediated rejection (TCMR), and 5 related histologic lesions were generated using supervised machine learning methods. These scores were used as input for archetypal analysis, an unsupervised method similar to cluster analysis, to examine the distribution of molecular phenotypes related to rejection. Six archetypes were generated: no rejection, TCMR, 3 associated with ABMR (early-stage, fully developed, and late-stage), and mixed rejection (TCMR plus early-stage ABMR). Each biopsy was assigned 6 scores, one for each archetype, representing a probabilistic assessment of that biopsy based on its rejection-related molecular properties. Viewed as clusters, the archetypes were similar to existing histologic Banff categories, but there was 32% disagreement, much of it probably reflecting the “noise” in the current histologic assessment system. Graft survival was lowest for fully developed and late-stage ABMR, and it was better predicted by molecular archetype scores than histologic diagnoses. The results provide a system for precision molecular assessment of biopsies and a new standard for recalibrating conventional diagnostic systems.
Jeff Reeve, Georg A. Böhmig, Farsad Eskandary, Gunilla Einecke, Carmen Lefaucheur, Alexandre Loupy, Philip F. Halloran, the MMDx-Kidney study group
No posts were found with this tag.