While the treatment of inflammatory disorders is generally based on inhibiting factors that drive onset of inflammation, these therapies can compromise healing (NSAIDs) or dampen immunity against infections (biologics). In search of new antiinflammatories, efforts have focused on harnessing endogenous pathways that drive resolution of inflammation for therapeutic gain. Identification of specialized pro-resolving mediators (SPMs) (lipoxins, resolvins, protectins, maresins) as effector molecules of resolution has shown promise in this regard. However, their action on inflammatory resolution in humans is unknown. Here, we demonstrate using a model of UV-killed Escherichia coli–triggered skin inflammation that SPMs are biosynthesized at the local site at the start of resolution, coinciding with the expression of receptors that transduce their actions. These include receptors for lipoxin A4 (ALX/FPR2), resolvin E1 (ChemR23), resolvin D2 (GPR18), and resolvin D1 (GPR32) that were differentially expressed on the endothelium and infiltrating leukocytes. Administering SPMs into the inflamed site 4 hours after bacterial injection caused a reduction in PMN numbers over the ensuing 6 hours, the phase of active resolution in this model. These results indicate that in humans, the appearance of SPMs and their receptors is associated with the beginning of inflammatory resolution and that their therapeutic supplementation enhanced the resolution response.
Madhur P. Motwani, Romain A. Colas, Marc J. George, Julia D. Flint, Jesmond Dalli, Angela Richard-Loendt, Roel P.H. De Maeyer, Charles N. Serhan, Derek W. Gilroy
TNF and granulocyte macrophage-colony stimulating factor (GM-CSF) have proinflammatory activity and both contribute, for example, to rheumatoid arthritis pathogenesis. We previously identified a new GM-CSF→JMJD3 demethylase→interferon regulatory factor 4 (IRF4)→CCL17 pathway that is active in monocytes/macrophages in vitro and important for inflammatory pain, as well as for arthritic pain and disease. Here we provide evidence for a nexus between TNF and this pathway, and for TNF and GM-CSF interdependency. We report that the initiation of zymosan-induced inflammatory pain and zymosan-induced arthritic pain and disease are TNF dependent. Once arthritic pain and disease are established, blockade of GM-CSF or CCL17, but not of TNF, is still able to ameliorate them. TNF is required for GM-CSF–driven inflammatory pain and for initiation of GM-CSF–driven arthritic pain and disease, but not once they are established. TNF-driven inflammatory pain and TNF-driven arthritic pain and disease are dependent on GM-CSF and mechanistically require the same downstream pathway involving GM-CSF→CCL17 formation via JMJD3-regulated IRF4 production, indicating that GM-CSF and CCL17 can mediate some of the proinflammatory and algesic actions of TNF. Given we found that TNF appears important only early in arthritic pain and disease progression, targeting a downstream mediator, such as CCL17, which appears to act throughout the course of disease, could be effective at ameliorating chronic inflammatory conditions where TNF is implicated.
Andrew D. Cook, Ming-Chin Lee, Reem Saleh, Hsu-Wei Khiew, Anne D. Christensen, Adrian Achuthan, Andrew J. Fleetwood, Derek C. Lacey, Julia E. Smith, Irmgard Förster, John A. Hamilton
Periplakin is a component of the desmosomes that acts as a cytolinker between intermediate filament scaffolding and the desmosomal plaque. Periplakin is strongly expressed by epithelial cells in the lung and is a target antigen for autoimmunity in idiopathic pulmonary fibrosis. The aim of this study was to determine the role of periplakin during lung injury and remodeling in a mouse model of lung fibrosis induced by bleomycin. We found that periplakin expression was downregulated in the whole lung and in alveolar epithelial cells following bleomycin-induced injury. Deletion of the Ppl gene in mice improved survival and reduced lung fibrosis development after bleomycin-induced injury. Notably, Ppl deletion promoted an antiinflammatory alveolar environment linked to profound changes in type 2 alveolar epithelial cells, including overexpression of antiinflammatory cytokines, decreased expression of profibrotic mediators, and altered cell signaling with a reduced response to TGF-β1. These results identify periplakin as a previously unidentified regulator of the response to injury in the lung.
Valérie Besnard, Rania Dagher, Tania Madjer, Audrey Joannes, Madeleine Jaillet, Martin Kolb, Philippe Bonniaud, Lynne A. Murray, Matthew A. Sleeman, Bruno Crestani
Osteoarthritis (OA) is a degenerative joint disease involving both cartilage and synovium. The canonical Wnt/β-catenin pathway, which is activated in OA, is emerging as an important regulator of tissue repair and fibrosis. This study seeks to examine Wnt pathway effects on synovial fibroblasts and articular chondrocytes as well as the therapeutic effects of Wnt inhibition on OA disease severity. Mice underwent destabilization of the medial meniscus surgery and were treated by intra-articular injection with XAV-939, a small-molecule inhibitor of Wnt/β-catenin signaling. Wnt/β-catenin signaling was highly activated in murine synovial fibroblasts as well as in OA-derived human synovial fibroblasts. XAV-939 ameliorated OA severity associated with reduced cartilage degeneration and synovitis in vivo. Wnt inhibition using mechanistically distinct small-molecule inhibitors, XAV-939 and C113, attenuated the proliferation and type I collagen synthesis in synovial fibroblasts in vitro but did not affect human OA-derived chondrocyte proliferation. However, Wnt modulation increased COL2A1 and PRG4 transcripts, which are downregulated in chondrocytes in OA. In conclusion, therapeutic Wnt inhibition reduced disease severity in a model of traumatic OA via promoting anticatabolic effects on chondrocytes and antifibrotic effects on synovial fibroblasts and may be a promising class of drugs for the treatment of OA.
Caressa Lietman, Brian Wu, Sarah Lechner, Andrew Shinar, Madhur Sehgal, Evgeny Rossomacha, Poulami Datta, Anirudh Sharma, Rajiv Gandhi, Mohit Kapoor, Pampee P. Young
Type I IFN (IFN-I) dysregulation contributes to type 1 diabetes (T1D) development, and although increased IFN-I signals are pathogenic at the initiation of autoimmune diabetes, IFN-I dysregulation at later pathogenic stages more relevant for therapeutic intervention is not well understood. We discovered that 5 key antigen-presenting cell subsets from adult prediabetic NOD mice have reduced responsiveness to IFN-I that is dominated by a decrease in the tonic-sensitive subset of IFN-I response genes. Blockade of IFNAR1 in prediabetic NOD mice accelerated diabetes and increased Th1 responses. Therefore, IFN-I responses shift from pathogenic to protective as autoimmunity progresses, consistent with chronic IFN-I exposure. In contrast, IL-1–associated inflammatory pathways were elevated in prediabetic mice. These changes correlated with human T1D onset-associated gene expression. Prostaglandin E2 (PGE2) and prostaglandin receptor 4 (PTGER4), a receptor for PGE2 that mediates both inflammatory and regulatory eicosanoid signaling, were higher in NOD mice and drive innate immune dysregulation. Treating prediabetic NOD mice with a PTGER4 antagonist restored IFNAR signaling, decreased IL-1 signaling, and decreased infiltration of leukocytes into the islets. Therefore, innate cytokine alterations contribute to both T1D-associated inflammation and autoimmune pathogenesis. Modulating innate immune balance via signals such as PTGER4 may contribute to treatments for autoimmunity.
M. Jubayer Rahman, Kameron B. Rodrigues, Juan A. Quiel, Yi Liu, Vipul Bhargava, Yongge Zhao, Chie Hotta-Iwamura, Han-Yu Shih, Annie W. Lau-Kilby, Allison M.W. Malloy, Timothy W. Thoner, Kristin V. Tarbell
Type 1 diabetes (T1D) is a chronic disease characterized by an autoimmune-mediated destruction of insulin-producing pancreatic β cells. Environmental factors such as viruses play an important role in the onset of T1D and interact with predisposing genes. Recent data suggest that viral infection of human islets leads to a decrease in insulin production rather than β cell death, suggesting loss of β cell identity. We undertook this study to examine whether viral infection could induce human β cell dedifferentiation. Using the functional human β cell line EndoC-βH1, we demonstrate that polyinosinic-polycytidylic acid (PolyI:C), a synthetic double-stranded RNA that mimics a byproduct of viral replication, induces a decrease in β cell–specific gene expression. In parallel with this loss, the expression of progenitor-like genes such as SOX9 was activated following PolyI:C treatment or enteroviral infection. SOX9 was induced by the NF-κB pathway and also in a paracrine non–cell-autonomous fashion through the secretion of IFN-α. Lastly, we identified SOX9 targets in human β cells as potentially new markers of dedifferentiation in T1D. These findings reveal that inflammatory signaling has clear implications in human β cell dedifferentiation.
Masaya Oshima, Klaus-Peter Knoch, Marc Diedisheim, Antje Petzold, Pierre Cattan, Marco Bugliani, Piero Marchetti, Pratik Choudhary, Guo-Cai Huang, Stefan R. Bornstein, Michele Solimena, Olivier Albagli-Curiel, Raphael Scharfmann
Phosphodiesterase 3 (PDE3) and PDE4 regulate levels of cyclic AMP, which are critical in various cell types involved in allergic airway inflammation. Although PDE4 inhibition attenuates allergic airway inflammation, reported side effects preclude its application as an antiasthma drug in humans. Case reports showed that enoximone, which is a smooth muscle relaxant that inhibits PDE3, is beneficial and lifesaving in status asthmaticus and is well tolerated. However, clinical observations also showed antiinflammatory effects of PDE3 inhibition. In this study, we investigated the role of PDE3 in a house dust mite–driven (HDM-driven) allergic airway inflammation (AAI) model that is characterized by T helper 2 cell activation, eosinophilia, and reduced mucosal barrier function. Compared with wild-type (WT) littermates, mice with a targeted deletion of the PDE3A or PDE3B gene showed significantly reduced HDM-driven AAI. Therapeutic intervention in WT mice showed that all hallmarks of HDM-driven AAI were abrogated by the PDE3 inhibitors enoximone and milrinone. Importantly, we found that enoximone also reduced the upregulation of the CD11b integrin on mouse and human eosinophils in vitro, which is crucial for their recruitment during allergic inflammation. This study provides evidence for a hitherto unknown antiinflammatory role of PDE3 inhibition in allergic airway inflammation and offers a potentially novel treatment approach.
Jan Beute, Melanie Lukkes, Ewout P. Koekoek, Hedwika Nastiti, Keerthana Ganesh, Marjolein J.W. de Bruijn, Steve Hockman, Menno van Nimwegen, Gert-Jan Braunstahl, Louis Boon, Bart N. Lambrecht, Vince C. Manganiello, Rudi W. Hendriks, Alex KleinJan
Signaling through IL-2/IL-15Rβ (CD122) is essential for the differentiation and function of T cells and NK cells. A mAb against CD122 has been implicated to suppress autoimmune type 1 diabetes (T1D) development in animal models. However, the mechanisms remain poorly understood. We find that in vivo administration of an anti-CD122 mAb (CD122 blockade) restores immune tolerance in nonobese diabetic (NOD) mice via multiple mechanisms. First, CD122 blockade selectively ablates pathogenic NK cells and memory phenotype CD8+ T cells from pancreatic islets. In contrast, islet CD4+Foxp3+ Tregs are only mildly affected. Second, CD122 blockade suppresses IFN-γ production in islet immune cells. Third, CD122 blockade inhibits the conversion of islet Th17 cells into diabetogenic Th1 cells. Furthermore, a combination of anti-CD122 mAb and Treg-trophic cytokines (IL-2 or IL-33) enhances the abundance and function of islet Tregs. In summary, these data provide crucial mechanistic insights into CD122 blockade–mediated immunoregulation and support therapeutic benefits of this combinational treatment in T1D.
Xiaomei Yuan, Yi Dong, Naoya Tsurushita, J. Yun Tso, Wenxian Fu
Inflammation is critical to atherogenesis. Psoriasis is a chronic inflammatory skin disease that accelerates atherosclerosis in humans and provides a compelling model to understand potential pathways linking these diseases. A murine model capturing the vascular and metabolic diseases in psoriasis would accelerate our understanding and provide a platform to test emerging therapies. We aimed to characterize a new murine model of skin inflammation (Rac1V12) from a cardiovascular standpoint to identify novel atherosclerotic signaling pathways modulated in chronic skin inflammation. The RacV12 psoriasis mouse resembled the human disease state, including presence of systemic inflammation, dyslipidemia, and cardiometabolic dysfunction. Psoriasis macrophages had a proatherosclerotic phenotype with increased lipid uptake and foam cell formation, and also showed a 6-fold increase in cholesterol crystal formation. We generated a triple-genetic K14-RacV12–/+/Srb1–/–/ApoER61H/H mouse and confirmed psoriasis accelerates atherogenesis (~7-fold increase). Finally, we noted a 60% reduction in superoxide dismutase 2 (SOD2) expression in human psoriasis macrophages. When SOD2 activity was restored in macrophages, their proatherogenic phenotype reversed. We demonstrate that the K14-RacV12 murine model captures the cardiometabolic dysfunction and accelerates vascular disease observed in chronic inflammation and that skin inflammation induces a proatherosclerotic macrophage phenotype with impaired SOD2 function, which associated with accelerated atherogenesis.
Yvonne Baumer, Qimin Ng, Gregory E. Sanda, Amit K. Dey, Heather L. Teague, Alexander V. Sorokin, Pradeep K. Dagur, Joanna I. Silverman, Charlotte L. Harrington, Justin A. Rodante, Shawn M. Rose, Nevin J. Varghese, Agastya D. Belur, Aditya Goyal, Joel M. Gelfand, Danielle A. Springer, Christopher K.E. Bleck, Crystal L. Thomas, Zu-Xi Yu, Mårten C.G. Winge, Howard S. Kruth, M. Peter Marinkovich, Aditya A. Joshi, Martin P. Playford, Nehal N. Mehta
Sepsis-associated acute respiratory distress syndrome (ARDS) is characterized by neutrophilic inflammation and poor survival. Since neutrophil myeloperoxidase (MPO) activity leads to increased plasma 2-chlorofatty acid (2-ClFA) levels, we hypothesized that plasma concentrations of 2-ClFAs would associate with ARDS and mortality in subjects with sepsis. In sequential consenting patients with sepsis, free 2-ClFA levels were significantly associated with ARDS, and with 30-day mortality, for each log increase in free 2-chlorostearic acid. Plasma MPO was not associated with either ARDS or 30-day mortality but was correlated with 2-ClFA levels. Addition of plasma 2-ClFA levels to the APACHE III score improved prediction for ARDS. Plasma 2-ClFA levels correlated with plasma levels of angiopoietin-2, E selectin, and soluble thrombomodulin. Endothelial cells treated with 2-ClFA responded with increased adhesion molecule surface expression, increased angiopoietin-2 release, and dose-dependent endothelial permeability. Our results suggest that 2-ClFAs derived from neutrophil MPO-catalyzed oxidation contribute to pulmonary endothelial injury and have prognostic utility in sepsis-associated ARDS.
Nuala J. Meyer, John P. Reilly, Rui Feng, Jason D. Christie, Stanley L. Hazen, Carolyn J. Albert, Jacob D. Franke, Celine L. Hartman, Jane McHowat, David A. Ford
No posts were found with this tag.