Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus responsible for numerous outbreaks. Chikungunya can cause debilitating acute and chronic disease. Thus, the development of a safe and effective CHIKV vaccine is an urgent global health priority.This study evaluated the effectiveness of the live-attenuated CHIKV vaccine VLA1553 against WT CHIKV infection by using passive transfer of sera from vaccinated volunteers to non-human primates (NHP) subsequently exposed to WT CHIKV and established a serological surrogate of protection. We demonstrated that human VLA1553 sera transferred to NHPs conferred complete protection from CHIKV viremia and fever after challenge with homologous WT CHIKV. In addition, serum transfer protected animals from other CHIKV associated clinical symptoms and from CHIKV persistence in tissue. Based on this passive transfer study, a 50% micro plaque reduction neutralization test titer of ≥150 was determined as a surrogate of protection which was supported by analysis of samples from a sero-epidemiological study.In conclusion, considering the unfeasibility of an efficacy trial due to the unpredictability and explosive, rapidly moving nature of chikungunya outbreaks, the definition of a surrogate of protection for VLA1553 is an important step towards vaccine licensure to reduce the medical burden caused by chikungunya.
Pierre Roques, Andrea Fritzer, Nathalie Dereuddre-Bosquet, Nina Wressnigg, Romana Hochreiter, Laetitia Bossevot, Quentin Pascal, Fabienne Guehenneux, Annegret Bitzer, Irena Corbic Ramljak, Roger Le Grand, Urban Lundberg, Andreas Meinke
The role of immune responses to previously seen endemic coronavirus epitopes in severe acute respiratory coronavirus 2 (SARS-CoV-2) infection and disease progression has not yet been determined. Here, we show that a key characteristic of fatal coronavirus disease (COVID-19) outcomes is that the immune response to the SARS-CoV-2 spike protein is enriched for antibodies directed against epitopes shared with endemic beta-coronaviruses, and has a lower proportion of antibodies targeting the more protective variable regions of the spike. The magnitude of antibody responses to the SARS-CoV-2 full-length spike protein, its domains and subunits, and the SARS-CoV-2 nucleocapsid also correlated strongly with responses to the endemic beta-coronavirus spike proteins in individuals admitted to intensive care units (ICU) with fatal COVID-19 outcomes, but not in individuals with non-fatal outcomes. This correlation was found to be due to the antibody response directed at the S2 subunit of the SARS-CoV-2 spike protein, which has the highest degree of conservation between the beta-coronavirus spike proteins. Intriguingly, antibody responses to the less cross-reactive SARS-CoV-2 nucleocapsid were not significantly different in individuals who were admitted to ICU with fatal and non-fatal outcomes, suggesting an antibody profile in individuals with fatal outcomes consistent with an original antigenic sin type-response.
Anna L. McNaughton, Robert S. Paton, Matthew Edmans, Jonathan C.W. Youngs, Judith Wellens, Prabhjeet Phalora, Alex Fyfe, Sandra Belij-Rammerstorfer, Jai S. Bolton, Jonathan Ball, George W. Carnell, Wanwisa Dejnirattisai, Christina Dold, David W. Eyre, Philip Hopkins, Alison Howarth, Kreepa Kooblall, Hannah Klim, Susannah Leaver, Lian N. Lee, César López-Camacho, Sheila F. Lumley, Derek C. Macallan, Alexander J. Mentzer, Nicholas M. Provine, Jeremy Ratcliff, Jose L. Slon-Campos, Donal T. Skelly, Lucas B. Stolle, Piyada Supasa, Nigel Temperton, Chris Walker, Beibei Wang, Duncan Wyncoll, Peter Simmonds, Teresa Lambe, John K. Ballie, Malcolm G. Semple, Peter J.M. Openshaw, Uri Obolski, Marc Turner, Miles Carroll, Juthathip Mongkolsapaya, Gavin Screaton, Stephen H. Kennedy, Lisa M. Jarvis, Eleanor Barnes, Susanna Dunachie, José Lourenço, Philippa C. Matthews, Tihana Bicanic, Paul Klenerman, Sunetra Gupta, Craig P. Thompson
The Aedes aegypti mosquito transmits both dengue (DENV) and Zika (ZIKV) viruses. Individuals in endemic areas are at risk for infection with both viruses as well as repeated DENV infection. In the presence of anti-DENV antibodies, outcomes of secondary DENV infection range from mild to life-threatening. Further, the role of cross-reactive antibodies on the course of ZIKV infection remains unclear. We assessed the ability of cross-reactive DENV monoclonal antibodies or polyclonal immunoglobulin isolated after DENV vaccination to upregulate type I interferon (IFN) production by plasmacytoid dendritic cells (pDCs) in response to both heterotypic DENV- and ZIKV- infected cells. We found a range in the ability of antibodies to increase pDC IFN production and a positive correlation between IFN production and the ability of an antibody to bind to the infected cell surface. Engagement of Fc receptors on the pDC and Fab binding of an epitope on infected cells was required to mediate increased IFN production by providing specificity to and promoting pDC sensing of DENV or ZIKV. This represents a mechanism independent of neutralization by which pre-existing cross-reactive DENV antibodies could protect a subset of individuals from severe outcomes during secondary heterotypic DENV or ZIKV infection.
Laura K. Aisenberg, Kimberly E. Rousseau, Katherine Cascino, Guido Massaccesi, William H. Aisenberg, Wensheng Luo, Kar Muthumani, David B. Weiner, Stephen S. Whitehead, Michael A. Chattergoon, Anna P. Durbin, Andrea L. Cox
Pregnancy confers unique immune responses to infection and vaccination across gestation. To date, there is limited data comparing vaccine versus infection-induced nAb to COVID-19 variants in mothers during pregnancy. We analyzed paired maternal and cord plasma samples from 60 pregnant individuals. Thirty women vaccinated with mRNA vaccines (from December 2020 through August 2021) were matched with 30 naturally infected women (from March 2020 through January 2021) by gestational age of exposure. Neutralization activity against the five SARS-CoV-2 Spike sequences was measured by a SARS-CoV-2 pseudotyped Spike virion assay. Effective nAbs against SARS-CoV-2 were present in maternal and cord plasma after both infection and vaccination. Compared to wild type Spike, these nAbs were less effective against the Delta and Mu Spike variants. Vaccination during the third trimester induced higher cord nAb levels at delivery than infection during the third trimester. In contrast, vaccine-induced nAb levels were lower at the time of delivery compared to infection during the first trimester. The transfer ratio (cord nAb level/maternal nAb level) was greatest in mothers vaccinated in the second trimester. SARS-CoV-2 vaccination or infection in pregnancy elicit effective nAbs with differing neutralization kinetics that is impacted by gestational time of exposure.
Yusuke Matsui, Lin Li, Mary Prahl, Arianna G. Cassidy, Nida Ozarslan, Yarden Golan, Veronica J. Gonzalez, Christine Y. Lin, Unurzul Jigmeddagva, Megan A. Chidboy, Mauricio Montano, Taha Y. Taha, Mir M. Khalid, Bharath Sreekumar, Jennifer M. Hayashi, Pei-Yi Chen, G. Renuka Kumar, Lakshmi Warrier, Alan H.B. Wu, Dongli Song, Priya Jegatheesan, Daljeet S. Rai, Balaji Govindaswami, Jordan M. Needens, Monica Rincon, Leslie Myatt, Ifeyinwa V. Asiodu, Valerie J. Flaherman, Yalda Afshar, Vanessa L. Jacoby, Amy P. Murtha, Joshua F. Robinson, Melanie Ott, Warner C. Greene, Stephanie L Gaw
Nontuberculous mycobacteria (NTM) are an increasingly common cause of respiratory infection in people with cystic fibrosis (PwCF). Relative to those with no history of NTM infection (CF-NTMNEG), PwCF and a history of NTM infection (CF-NTMPOS) are more likely to develop severe lung disease and experience complications over the course of treatment. In other mycobacterial infections (e.g. tuberculosis), an overexuberant immune response causes pathology and compromises organ function; however, since the immune profiles of CF-NTMPOS and CF-NTMNEG airways are largely unexplored, it is unknown which if any immune responses distinguish these cohorts or concentrate in damaged tissues. Here we evaluated lung lobe-specific immune profiles of three cohorts (CF-NTMPOS, CF-NTMNEG, and non-CF adults) and found that CF-NTMPOS airways are distinguished by a hyper-inflammatory cytokine profile. Importantly, the CF-NTMPOS airway immune profile was dominated by B cells, classical macrophages and the cytokines which support their accumulation. These and other immunological differences between cohorts, including the near absence of NK cells and complement pathway members, were enriched in the most damaged lung lobes. The implications of these findings for our understanding of lung disease in PwCF are discussed, as are how they may inform the development of host-directed therapies to improve NTM disease treatment.
Don Hayes, Jr., Rajni Kant Shukla, Yizi Cheng, Emrah Gecili, Marlena R. Merling, Rhonda D. Szczesniak, Assem G Ziady, Jason C. Woods, Luanne Hall-Stoodley, Namal P.M. Liyanage, Richard T. Robinson
Studies have demonstrated the phenotypic heterogeneity of vascular endothelial cells (ECs) within a vascular bed; however, little is known about how distinct endothelial subpopulations in a particular organ respond to an inflammatory stimulus. We performed single cell RNA-sequencing of 35,973 lung ECs obtained during the baseline state as well as post-injury time points following inflammatory lung injury induced by lipopolysaccharide. Seurat clustering and gene expression pathway analysis identified two major subpopulations in the lung microvascular endothelium, a subpopulation enriched for expression of immune response genes such as major histocompatibility complex genes (immuneEC) and another defined by increased expression of vascular development genes such as Sox17 (devEC). The presence of immuneEC and devEC subpopulations was also observed in non-human primate lungs infected with SARS-CoV-2 and murine lungs infected with H1N1 influenza virus. Following the peak of inflammatory injury, we observed the emergence of a proliferative lung EC subpopulation. Overexpression of Sox17 prevented inflammatory activation in ECs. Thus, there appears to be a” division of labor” within the lung microvascular endothelium with some ECs showing propensity for inflammatory signaling and others for endothelial regeneration. These results provide underpinnings for the development of targeted therapies to limit inflammatory lung injury and promote regeneration.
Lianghui Zhang, Shang Gao, Zachary White, Yang Dai, Asrar B. Malik, Jalees Rehman
Understanding the immune response to dengue virus (DENV) is essential for developing a dengue vaccine that is protective against all four DENV serotypes. We evaluated the immune response post-vaccination (live attenuated tetravalent dengue vaccine TV005 or trivalent admixture) and post-challenge with DEN2Δ30 (Tonga/74) to better understand the importance of homotypic immunity in vaccine protection. Significant increases in IP-10 expression were observed following receipt of either the trivalent or tetravalent vaccine. After challenge, a large increase in IP-10 expression was observed in the placebo (FCH = 4.5) and trivalent admixture groups (FCH = 2.3) but not in the tetravalent vaccine group (FCH = 1.1). MCP-1, IL-1RA, and MIP-1β exhibit a similar pattern as IP-10. These results demonstrate protective effects of trivalent and tetravalent vaccines against DENV, but suggest a better protective effect with the tetravalent vaccine compared to the trivalent admixture. We also explored the post-vaccination and post-challenge immune response differences between black participants and white participants. White participants respond to vaccine differently from black participants, with black participants receiving trivalent and tetravalent vaccines respond strongly and white participants only transiently in trivalent group. In response to challenge, white participants elicit a stronger response than black participants. These results may explain why white participants may have a more vigorous DENV immune response than black participants reported in literature.
Ruixue Hou, Lewis E. Tomalin, Jessica Pintado Silva, Seunghee Kim-Schulze, Stephen S. Whitehead, Ana Fernandez-Sesma, Anna P. Durbin, Mayte Suárez-Fariñas
Preterm infants are susceptible to bloodstream infection by coagulase-negative staphylococci (CONS) that can lead to sepsis. High parenteral glucose supplement is commonly used to support their growth and energy expenditure, but may exceed endogenous regulation during infection, causing dysregulated immune response and clinical deterioration. Using a preterm piglet model of neonatal CONS sepsis induced by Staphylococcus epidermidis infection, we demonstrate the delicate interplay between immunity and glucose metabolism to regulate the host infection response. Circulating glucose levels, glycolysis and inflammatory response to infection are closely connected across the states of tolerance, resistance and immunoparalysis. Further, high parenteral glucose provision during infection induces hyperglycemia, elevated glycolysis and inflammation, leading to metabolic acidosis and sepsis, whereas glucose restricted individuals are clinically unaffected with increased gluconeogenesis to maintain moderate hypoglycemia. Finally, standard glucose supply maintaining normoglycemia or pharmacological glycolysis inhibition enhances bacterial clearance and dampens inflammation but fails to prevent sepsis. Our results uncover how blood glucose and glycolysis controls circulating immune responses, in turn determining the clinical fate of CONS infected preterm individuals. This questions the current practice of parenteral glucose supply for preterm infants during infection.
Tik Muk, Anders Brunse, Nicole L. Henriksen, Karoline Aasmul-Olsen, Duc Ninh Nguyen
Secondary infections are frequent complications of viral respiratory infections but the potential consequence of SARS-CoV-2 co-infection with common pulmonary pathogens is poorly understood. We report that co-infection of human ACE2 transgenic mice with sublethal doses of SARS-CoV-2 and Streptococcus pneumoniae results in synergistic lung inflammation and lethality. Mortality was observed regardless of whether SARS-CoV-2 challenge occurred before or after establishment of sublethal pneumococcal infection. Increased bacterial levels following co-infection were associated with alveolar macrophage depletion and treatment with murine GM-CSF reduced lung bacteria numbers and pathology, and partially protected from death. However, therapeutic targeting of interferons, an approach that is effective against influenza co-infections, failed to increase survival. Combined vaccination against both SARS-CoV-2 and pneumococci resulted in 100% protection against subsequent co-infection. The results indicate that when seasonal respiratory infections return to pre-pandemic levels, they could lead to an increased incidence of lethal COVID-19 superinfections, especially among the unvaccinated population.
Tarani Kanta Barman, Amit K. Singh, Jesse L. Bonin, Tanvir N. Nafiz, Sharon L. Salmon, Dennis W. Metzger
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic, debilitating multisystem illness of unknown etiology for which there is no cure and no diagnostic tests available. Despite increasing evidence implicating EBV and human herpesvirus-6A (HHV-6A) as potential causative infectious agents in a subset of ME/CFS patients, there are few mechanistic studies to address a causal relationship. In this study we examined a large ME/CFS cohort (n=351) and 77 controls and demonstrate a significant increase in activin A and IL-21serum levels, which correlated with seropositivity for antibodies to the EBV and HHV-6 protein deoxyuridine-triphosphate nucleotidohydrolase (dUTPase), but not CXCL13. These cytokines are critical for T follicular helper (TFH) cell differentiation, generation of high-affinity antibodies and long-lived plasma cells. Notably, ME/CFS serum was sufficient to drive TFH cell differentiation via an activin A-dependent mechanism. The lack of simultaneous CXCL13 increase with IL-21 indicates impaired TFH-function in ME/CFS. In vitro studies revealed that virus-dUTPases strongly induced activin A secretion while in vivo, EBV-dUTPase induced the formation of splenic marginal zone B and invariant NKTFH cells. Altogether, our data indicate abnormal germinal center (GC) activity in ME/CFS subjects and highlight a mechanism by which EBV and HHV6-dUTPases may alter GC and extrafollicular Ab responses.
Brandon S. Cox, Khaled Alharshawi, Irene Mena-Palomo, William P. Lafuse, Maria E. Ariza
No posts were found with this tag.