Ashutosh Lal, Esteban Gomez, Cassandra Calloway
Within the CNS, a dysregulated hemostatic response contributes to both hemorrhagic and ischemic strokes. Tissue factor (TF), the primary initiator of the extrinsic coagulation cascade, plays an essential role in hemostasis and also contributes to thrombosis. Using both genetic and pharmacologic approaches, we characterized the contribution of neuroectodermal (NE) cell TF to the pathophysiology of stroke. We used mice with various levels of TF expression and found that astrocyte TF activity reduced to ~5% of WT levels was still sufficient to maintain hemostasis after hemorrhagic stroke but was also low enough to attenuate inflammation, reduce damage to the blood-brain barrier, and improve outcomes following ischemic stroke. Pharmacologic inhibition of TF during the reperfusion phase of ischemic stroke attenuated neuronal damage, improved behavioral deficit, and prevented mortality of mice. Our data demonstrate that NE cell TF limits bleeding complications associated with the transition from ischemic to hemorrhagic stroke and also contributes to the reperfusion injury after ischemic stroke. The high level of TF expression in the CNS is likely the result of selective pressure to limit intracerebral hemorrhage (ICH) after traumatic brain injury but, in the modern era, poses the additional risk of increased ischemia-reperfusion injury after ischemic stroke.
Shaobin Wang, Brandi Reeves, Erica M. Sparkenbaugh, Janice Russell, Zbigniew Soltys, Hua Zhang, James E. Faber, Nigel S. Key, Daniel Kirchhofer, D. Neil Granger, Nigel Mackman, Rafal Pawlinski
The efficacy of allogeneic hematopoietic stem cell transplantation for hematologic malignancies is limited by the difficulty in suppressing graft-versus-host disease (GVHD) without compromising graft-versus-tumor (GVT) effects. We previously showed that RAS/MEK/ERK signaling depends on memory differentiation in human T cells, which confers susceptibility to selective inhibition of naive T cells. Actually, antineoplastic MEK inhibitors selectively suppress alloreactive T cells, sparing virus-specific T cells in vitro. Here, we show that trametinib, a MEK inhibitor clinically approved for melanoma, suppresses GVHD safely without affecting GVT effects in vivo. Trametinib prolonged survival of GVHD mice and attenuated GVHD symptoms and pathology in the gut and skin. It inhibited ERK1/2 phosphorylation and expansion of donor T cells, sparing Tregs and B cells. Although high-dose trametinib inhibited myeloid cell engraftment, low-dose trametinib suppressed GVHD without severe adverse events. Notably, trametinib facilitated the survival of mice transplanted with allogeneic T cells and P815 tumor cells with no residual P815 cells observed in the livers and spleens, whereas tacrolimus resulted in P815 expansion. These results confirm that trametinib selectively suppresses GVHD-inducing T cells while sparing antitumor T cells in vivo, which makes it a promising candidate for translational studies aimed at preventing or treating GVHD.
Hidekazu Itamura, Takero Shindo, Isao Tawara, Yasushi Kubota, Ryusho Kariya, Seiji Okada, Krishna V. Komanduri, Shinya Kimura
Marlise R. Luskin, Phyllis A. Gimotty, Catherine Smith, Alison W. Loren, Maria E. Figueroa, Jenna Harrison, Zhuoxin Sun, Martin S. Tallman, Elisabeth M. Paietta, Mark R. Litzow, Ari M. Melnick, Ross L. Levine, Hugo F. Fernandez, Selina M. Luger, Martin Carroll, Stephen R. Master, Gerald B.W. Wertheim
Multiple myeloma (MM) is a relapsed and refractory disease, one that highlights the need for developing new molecular therapies for overcoming of drug resistance. Addition of panobinostat, a histone deacetylase (HDAC) inhibitor, to bortezomib and dexamethasone improved progression-free survival (PFS) in relapsed and refractory MM patients. Here, we demonstrate how calcineurin, when inhibited by immunosuppressive drugs like FK506, is involved in myeloma cell growth and targeted by panobinostat. mRNA expression of
Yoichi Imai, Eri Ohta, Shu Takeda, Satoko Sunamura, Mariko Ishibashi, Hideto Tamura, Yan-hua Wang, Atsuko Deguchi, Junji Tanaka, Yoshiro Maru, Toshiko Motoji
The prevention of organ damage and early death in young adults is a major clinical concern in sickle cell disease (SCD). However, mechanisms that control adult progression of SCD during the transition from adolescence are poorly defined with no cognate prophylaxis. Here, we demonstrate in a longitudinal cohort of homozygous SCD (SS) mice a link between intravascular hemolysis, vascular inflammation, lung injury, and early death. Prophylactic Nrf2 activation in young SS mice stabilized intravascular hemolysis, reversed vascular inflammation, and attenuated lung edema in adulthood. Enhanced Nrf2 activation in endothelial cells in vitro concurred with the dramatic effect on vascular inflammation in the mice. BM chimeric SS mice lacking Nrf2 expression in nonhematopoietic tissues were created to dissect the role of nonerythroid Nrf2 in SCD progression. The SS chimeras developed severe intravascular hemolysis despite having erythroid Nrf2. In addition, they developed premature vascular inflammation and pulmonary edema and died younger than donor littermates with intact nonhematopoietic Nrf2. Our results reveal a dominant protective role for nonhematopoietic Nrf2 against tissue damage in both erythroid and nonerythroid tissues in SCD. Furthermore, we show that prophylactic augmentation of Nrf2-coordinated cytoprotection effectively impedes onset of the severe adult phenotype of SCD in mice.
Samit Ghosh, Chibueze A. Ihunnah, Rimi Hazra, Aisha L. Walker, Jason M. Hansen, David R. Archer, Amma T. Owusu-Ansah, Solomon F. Ofori-Acquah
Xenografting primary tumor cells allows modeling of the heterogeneous natures of malignant diseases and the influences of the tissue microenvironment. Here, we demonstrate that xenografting primary chronic lymphocytic leukemia (CLL) B lymphocytes with activated autologous T cells into alymphoid mice results in considerable CLL B cell division and sizable T cell expansion. Nevertheless, most/all CD5+CD19+ cells are eventually lost, due in part to differentiation into antibody-secreting plasmablasts/plasma cells. CLL B cell differentiation is associated with isotype class switching and development of new
Piers E.M. Patten, Gerardo Ferrer, Shih-Shih Chen, Rita Simone, Sonia Marsilio, Xiao-Jie Yan, Zachary Gitto, Chaohui Yuan, Jonathan E. Kolitz, Jacqueline Barrientos, Steven L. Allen, Kanti R. Rai, Thomas MacCarthy, Charles C. Chu, Nicholas Chiorazzi
BCR-ABL1+ B progenitor acute lymphoblastic leukemia (Ph+ B-ALL) is an aggressive disease that frequently responds poorly to currently available therapies. Alterations in
Michelle L. Churchman, Kathryn Evans, Jennifer Richmond, Alissa Robbins, Luke Jones, Irina M. Shapiro, Jonathan A. Pachter, David T. Weaver, Peter J. Houghton, Malcolm A. Smith, Richard B. Lock, Charles G. Mullighan
No posts were found with this tag.