Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

  • 4,186 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 71
  • 72
  • 73
  • …
  • 418
  • 419
  • Next →
FGF receptors mediate cellular senescence in the cystic fibrosis airway epithelium
Molly Easter, Meghan June Hirsch, Elex Harris, Patrick Henry Howze IV, Emma Lea Matthews, Luke I. Jones, Seth Bollenbecker, Shia Vang, Daniel J. Tyrrell, Yan Y. Sanders, Susan E. Birket, Jarrod W. Barnes, Stefanie Krick
Molly Easter, Meghan June Hirsch, Elex Harris, Patrick Henry Howze IV, Emma Lea Matthews, Luke I. Jones, Seth Bollenbecker, Shia Vang, Daniel J. Tyrrell, Yan Y. Sanders, Susan E. Birket, Jarrod W. Barnes, Stefanie Krick
View: Text | PDF

FGF receptors mediate cellular senescence in the cystic fibrosis airway epithelium

  • Text
  • PDF
Abstract

The number of adults living with cystic fibrosis (CF) has already increased significantly because of drastic improvements in life expectancy attributable to advances in treatment, including the development of highly effective modulator therapy. Chronic airway inflammation in CF contributes to morbidity and mortality, and aging processes like inflammaging and cell senescence influence CF pathology. Our results show that single-cell RNA sequencing data, human primary bronchial epithelial cells from non-CF and CF donors, a CF bronchial epithelial cell line, and Cftr-knockout (Cftr–/–) rats all demonstrated increased cell senescence markers in the CF bronchial epithelium. This was associated with upregulation of fibroblast growth factor receptors (FGFRs) and mitogen-activated protein kinase (MAPK) p38. Inhibition of FGFRs, specifically FGFR4 and to some extent FGFR1, attenuated cell senescence and improved mucociliary clearance, which was associated with MAPK p38 signaling. Mucociliary dysfunction could also be improved using a combination of senolytics in a CF ex vivo model. In summary, FGFR/MAPK p38 signaling contributes to cell senescence in CF airways, which is associated with impaired mucociliary clearance. Therefore, attenuation of cell senescence in the CF airways might be a future therapeutic strategy improving mucociliary dysfunction and lung disease in an aging population with CF.

Authors

Molly Easter, Meghan June Hirsch, Elex Harris, Patrick Henry Howze IV, Emma Lea Matthews, Luke I. Jones, Seth Bollenbecker, Shia Vang, Daniel J. Tyrrell, Yan Y. Sanders, Susan E. Birket, Jarrod W. Barnes, Stefanie Krick

×

A metabolic redox relay supports ER proinsulin export in pancreatic islet β cells
Kristen E. Rohli, Nicole J. Stubbe, Emily M. Walker, Gemma L. Pearson, Scott A. Soleimanpour, Samuel B. Stephens
Kristen E. Rohli, Nicole J. Stubbe, Emily M. Walker, Gemma L. Pearson, Scott A. Soleimanpour, Samuel B. Stephens
View: Text | PDF

A metabolic redox relay supports ER proinsulin export in pancreatic islet β cells

  • Text
  • PDF
Abstract

ER stress and proinsulin misfolding are heralded as contributing factors to β cell dysfunction in type 2 diabetes, yet how ER function becomes compromised is not well understood. Recent data identify altered ER redox homeostasis as a critical mechanism that contributes to insulin granule loss in diabetes. Hyperoxidation of the ER delays proinsulin export and limits the proinsulin supply available for insulin granule formation. In this report, we identified glucose metabolism as a critical determinant in the redox homeostasis of the ER. Using multiple β cell models, we showed that loss of mitochondrial function or inhibition of cellular metabolism elicited ER hyperoxidation and delayed ER proinsulin export. Our data further demonstrated that β cell ER redox homeostasis was supported by the metabolic supply of reductive redox donors. We showed that limiting NADPH and thioredoxin flux delayed ER proinsulin export, whereas thioredoxin-interacting protein suppression restored ER redox and proinsulin trafficking. Taken together, we propose that β cell ER redox homeostasis is buffered by cellular redox donor cycles, which are maintained through active glucose metabolism.

Authors

Kristen E. Rohli, Nicole J. Stubbe, Emily M. Walker, Gemma L. Pearson, Scott A. Soleimanpour, Samuel B. Stephens

×

Intraepithelial CD15 infiltration identifies high-grade anal dysplasia in people with HIV
Joaquín Burgos, Aleix Benítez-Martínez, Cristina Mancebo, Núria Massana, Antonio Astorga-Gamaza, Josep Castellvi, Stefania Landolfi, Adrià Curran, Jorge N. Garcia-Perez, Vicenç Falcó, María J. Buzón, Meritxell Genescà
Joaquín Burgos, Aleix Benítez-Martínez, Cristina Mancebo, Núria Massana, Antonio Astorga-Gamaza, Josep Castellvi, Stefania Landolfi, Adrià Curran, Jorge N. Garcia-Perez, Vicenç Falcó, María J. Buzón, Meritxell Genescà
View: Text | PDF

Intraepithelial CD15 infiltration identifies high-grade anal dysplasia in people with HIV

  • Text
  • PDF
Abstract

Men who have sex with men (MSM) with HIV are at high risk for squamous intraepithelial lesion (SIL) and anal cancer. Identifying local immunological mechanisms involved in the development of anal dysplasia could aid treatment and diagnostics. Here, we studied 111 anal biopsies obtained from 101 MSM with HIV, who participated in an anal screening program. We first assessed multiple immune subsets by flow cytometry, in addition to histological examination, in a discovery cohort. Selected molecules were further evaluated by immunohistochemistry in a validation cohort. Pathological samples were characterized by the presence of resident memory T cells with low expression of CD103 and by changes in natural killer cell subsets, affecting residency and activation. Furthermore, potentially immunosuppressive subsets, including CD15+CD16+ mature neutrophils, gradually increased as the anal lesion progressed. Immunohistochemistry verified the association between the presence of CD15 in the epithelium and SIL diagnosis for the correlation with high-grade SIL. A complex immunological environment with imbalanced proportions of resident effectors and immune-suppressive subsets characterized pathological samples. Neutrophil infiltration, determined by CD15 staining, may represent a valuable pathological marker associated with the grade of dysplasia.

Authors

Joaquín Burgos, Aleix Benítez-Martínez, Cristina Mancebo, Núria Massana, Antonio Astorga-Gamaza, Josep Castellvi, Stefania Landolfi, Adrià Curran, Jorge N. Garcia-Perez, Vicenç Falcó, María J. Buzón, Meritxell Genescà

×

BRD7 as key factor in PBAF complex assembly and CD8+ T cell differentiation
Feng Huang, Yingtong Lin, Yidan Qiao, Yaochang Yuan, Zhihan Zhong, Baohong Luo, Yating Wu, Jun Liu, Jingliang Chen, Wanying Zhang, Hui Zhang, Bingfeng Liu
Feng Huang, Yingtong Lin, Yidan Qiao, Yaochang Yuan, Zhihan Zhong, Baohong Luo, Yating Wu, Jun Liu, Jingliang Chen, Wanying Zhang, Hui Zhang, Bingfeng Liu
View: Text | PDF

BRD7 as key factor in PBAF complex assembly and CD8+ T cell differentiation

  • Text
  • PDF
Abstract

Upon infection, naive CD8+ T cells differentiate into cytotoxic effector cells to eliminate the pathogen-infected cells. Although many mechanisms underlying this process have been demonstrated, the regulatory role of chromatin remodeling system in this process remains largely unknown. Here we show that BRD7, a component of the polybromo-associated BAF complex (PBAF), was required for naive CD8+ T cells to differentiate into functional short-lived effector cells (SLECs) in response to acute infections caused by influenza virus or lymphocytic choriomeningitis virus (LCMV). BRD7 deficiency in CD8+ T cells resulted in profound defects in effector population and functions, thereby impairing viral clearance and host recovery. Further mechanical studies indicate that the expression of BRD7 significantly turned to high from naive CD8+ T cells to effector cells, which bridged BRG1 and PBRM1 to the core module of PBAF complex, consequently facilitating the assembly of PBAF complex rather than BAF complex in the effector cells. The PBAF complex changed the chromatin accessibility at the loci of Tbx21 gene and upregulated its expression, leading to the maturation of effector T cells. Our research demonstrates that BRD7 and the PBAF complex are key in CD8+ T cell development and present a significant target for advancing immune therapies.

Authors

Feng Huang, Yingtong Lin, Yidan Qiao, Yaochang Yuan, Zhihan Zhong, Baohong Luo, Yating Wu, Jun Liu, Jingliang Chen, Wanying Zhang, Hui Zhang, Bingfeng Liu

×

Injury-induced Foxm1 expression in the mouse kidney drives epithelial proliferation by a cyclin F–dependent mechanism
Megan L. Noonan, Yoshiharu Muto, Yasuhiro Yoshimura, Aidan Leckie-Harre, Haojia Wu, Vladimir V. Kalinichenko, Benjamin D. Humphreys, Monica Chang-Panesso
Megan L. Noonan, Yoshiharu Muto, Yasuhiro Yoshimura, Aidan Leckie-Harre, Haojia Wu, Vladimir V. Kalinichenko, Benjamin D. Humphreys, Monica Chang-Panesso
View: Text | PDF

Injury-induced Foxm1 expression in the mouse kidney drives epithelial proliferation by a cyclin F–dependent mechanism

  • Text
  • PDF
Abstract

Acute kidney injury (AKI) strongly upregulates the transcription factor Foxm1 in the proximal tubule in vivo, and Foxm1 drives epithelial proliferation in vitro. Here, we report that deletion of Foxm1 either with a nephron-specific Cre driver or by inducible global deletion reduced proximal tubule proliferation after ischemic injury in vivo. Foxm1 deletion led to increased AKI to chronic kidney disease transition, with enhanced fibrosis and ongoing tubule injury 6 weeks after injury. We report ERK mediated FOXM1 induction downstream of the EGFR in primary proximal tubule cells. We defined FOXM1 genomic binding sites by cleavage under targets and release using nuclease (CUT&RUN) and compared the genes located near FOXM1 binding sites with genes downregulated in primary proximal tubule cells after FOXM1 knockdown. The aligned data sets revealed the cell cycle regulator cyclin F (CCNF) as a putative FOXM1 target. We identified 2 cis regulatory elements that bound FOXM1 and regulated CCNF expression, demonstrating that Ccnf is strongly induced after kidney injury and that Foxm1 deletion abrogates Ccnf expression in vivo and in vitro. Knockdown of CCNF also reduced proximal tubule proliferation in vitro. These studies identify an ERK/FOXM1/CCNF signaling pathway that regulates injury-induced proximal tubule cell proliferation.

Authors

Megan L. Noonan, Yoshiharu Muto, Yasuhiro Yoshimura, Aidan Leckie-Harre, Haojia Wu, Vladimir V. Kalinichenko, Benjamin D. Humphreys, Monica Chang-Panesso

×

Chronic pharmacologic manipulation of dopamine transmission ameliorates metabolic disturbance in Trappc9-linked brain developmental syndrome
Yan Li, Muhammad Usman, Ellen Sapp, Yuting Ke, Zejian Wang, Adel Boudi, Marian DiFiglia, Xueyi Li
Yan Li, Muhammad Usman, Ellen Sapp, Yuting Ke, Zejian Wang, Adel Boudi, Marian DiFiglia, Xueyi Li
View: Text | PDF

Chronic pharmacologic manipulation of dopamine transmission ameliorates metabolic disturbance in Trappc9-linked brain developmental syndrome

  • Text
  • PDF
Abstract

Loss-of-function mutations of the gene encoding the trafficking protein particle complex subunit 9 (Trappc9) cause autosomal recessive intellectual disability and obesity by unknown mechanisms. Genome-wide analysis links Trappc9 to nonalcoholic fatty liver disease (NAFLD). Trappc9-deficient mice have been shown to appear overweight shortly after weaning. Here, we analyzed serum biochemistry and histology of adipose and liver tissues to determine the incidence of obesity and NAFLD in Trappc9-deficient mice and combined transcriptomic and proteomic analyses, pharmacological studies, and biochemical and histological examinations of postmortem mouse brains to unveil mechanisms involved. We found that Trappc9-deficient mice presented with systemic glucose homeostatic disturbance, obesity, and NAFLD, which were relieved upon chronic treatment combining dopamine receptor D2 (DRD2) agonist quinpirole and DRD1 antagonist SCH23390. Blood glucose homeostasis in Trappc9-deficient mice was restored upon administering quinpirole alone. RNA-sequencing analysis of DRD2-containing neurons and proteomic study of brain synaptosomes revealed signs of impaired neurotransmitter secretion in Trappc9-deficient mice. Biochemical and histological studies of mouse brains showed that Trappc9-deficient mice synthesized dopamine normally, but their dopamine-secreting neurons had a lower abundance of structures for releasing dopamine in the striatum. Our study suggests that Trappc9 loss of function causes obesity and NAFLD by constraining dopamine synapse formation.

Authors

Yan Li, Muhammad Usman, Ellen Sapp, Yuting Ke, Zejian Wang, Adel Boudi, Marian DiFiglia, Xueyi Li

×

Sanglifehrin A mitigates multiorgan fibrosis by targeting the collagen chaperone cyclophilin B
Hope A. Flaxman, Maria-Anna Chrysovergi, Hongwei Han, Farah Kabir, Rachael T. Lister, Chia-Fu Chang, Robert Yvon, Katharine E. Black, Andreas Weigert, Rajkumar Savai, Alejandro Egea-Zorrilla, Ana Pardo-Saganta, David Lagares, Christina M. Woo
Hope A. Flaxman, Maria-Anna Chrysovergi, Hongwei Han, Farah Kabir, Rachael T. Lister, Chia-Fu Chang, Robert Yvon, Katharine E. Black, Andreas Weigert, Rajkumar Savai, Alejandro Egea-Zorrilla, Ana Pardo-Saganta, David Lagares, Christina M. Woo
View: Text | PDF

Sanglifehrin A mitigates multiorgan fibrosis by targeting the collagen chaperone cyclophilin B

  • Text
  • PDF
Abstract

Pathological deposition and crosslinking of collagen type I by activated myofibroblasts drives progressive tissue fibrosis. Therapies that inhibit collagen synthesis have potential as antifibrotic agents. We identify the collagen chaperone cyclophilin B as a major cellular target of the natural product sanglifehrin A (SfA) using photoaffinity labeling and chemical proteomics. Mechanistically, SfA inhibits and induces the secretion of cyclophilin B from the endoplasmic reticulum (ER) and prevents TGF-β1–activated myofibroblasts from synthesizing and secreting collagen type I in vitro, without inducing ER stress or affecting collagen type I mRNA transcription, myofibroblast migration, contractility, or TGF-β1 signaling. In vivo, SfA induced cyclophilin B secretion in preclinical models of fibrosis, thereby inhibiting collagen synthesis from fibrotic fibroblasts and mitigating the development of lung and skin fibrosis in mice. Ex vivo, SfA induces cyclophilin B secretion and inhibits collagen type I secretion from fibrotic human lung fibroblasts and samples from patients with idiopathic pulmonary fibrosis (IPF). Taken together, we provide chemical, molecular, functional, and translational evidence for demonstrating direct antifibrotic activities of SfA in preclinical and human ex vivo fibrotic models. Our results identify the cellular target of SfA, the collagen chaperone cyclophilin B, as a mechanistic target for the treatment of organ fibrosis.

Authors

Hope A. Flaxman, Maria-Anna Chrysovergi, Hongwei Han, Farah Kabir, Rachael T. Lister, Chia-Fu Chang, Robert Yvon, Katharine E. Black, Andreas Weigert, Rajkumar Savai, Alejandro Egea-Zorrilla, Ana Pardo-Saganta, David Lagares, Christina M. Woo

×

Targeting DRP1 with Mdivi-1 to correct mitochondrial abnormalities in ADOA+ syndrome
Yan Lin, Dongdong Wang, Busu Li, Jiayin Wang, Ling Xu, Xiaohan Sun, Kunqian Ji, Chuanzhu Yan, Fuchen Liu, Yuying Zhao
Yan Lin, Dongdong Wang, Busu Li, Jiayin Wang, Ling Xu, Xiaohan Sun, Kunqian Ji, Chuanzhu Yan, Fuchen Liu, Yuying Zhao
View: Text | PDF

Targeting DRP1 with Mdivi-1 to correct mitochondrial abnormalities in ADOA+ syndrome

  • Text
  • PDF
Abstract

Autosomal dominant optic atrophy plus (ADOA+) is characterized by primary optic nerve atrophy accompanied by a spectrum of degenerative neurological symptoms. Despite ongoing research, no effective treatments are currently available for this condition. Our study provided evidence for the pathogenicity of an unreported c.1780T>C variant in the OPA1 gene through patient-derived skin fibroblasts and an engineered HEK293T cell line with OPA1 downregulation. We demonstrate that OPA1 insufficiency promoted mitochondrial fragmentation and increased DRP1 expression, disrupting mitochondrial dynamics. Consequently, this disruption enhanced mitophagy and caused mitochondrial dysfunction, contributing to the ADOA+ phenotype. Notably, the Drp1 inhibitor, mitochondrial division inhibitor-1 (Mdivi-1), effectively mitigated the adverse effects of OPA1 impairment. These effects included reduced Drp1 phosphorylation, decreased mitochondrial fragmentation, and balanced mitophagy. Thus, we propose that intervening in DRP1 with Mdivi-1 could correct mitochondrial abnormalities, offering a promising therapeutic approach for managing ADOA+.

Authors

Yan Lin, Dongdong Wang, Busu Li, Jiayin Wang, Ling Xu, Xiaohan Sun, Kunqian Ji, Chuanzhu Yan, Fuchen Liu, Yuying Zhao

×

Peroxidase-mediated mucin cross-linking drives pathologic mucus gel formation in IL-13–stimulated airway epithelial cells
Maude A. Liegeois, Margaret Braunreuther, Annabelle R. Charbit, Wilfred W. Raymond, Monica Tang, Prescott G. Woodruff, Stephanie A. Christenson, Mario Castro, Serpil C. Erzurum, Elliot Israel, Nizar N. Jarjour, Bruce D. Levy, Wendy C. Moore, Sally E. Wenzel, Gerald G. Fuller, John V. Fahy
Maude A. Liegeois, Margaret Braunreuther, Annabelle R. Charbit, Wilfred W. Raymond, Monica Tang, Prescott G. Woodruff, Stephanie A. Christenson, Mario Castro, Serpil C. Erzurum, Elliot Israel, Nizar N. Jarjour, Bruce D. Levy, Wendy C. Moore, Sally E. Wenzel, Gerald G. Fuller, John V. Fahy
View: Text | PDF

Peroxidase-mediated mucin cross-linking drives pathologic mucus gel formation in IL-13–stimulated airway epithelial cells

  • Text
  • PDF
Abstract

Mucus plugs occlude airways to obstruct airflow in asthma. Studies in patients and in mouse models show that mucus plugs occur in the context of type 2 inflammation, and studies in human airway epithelial cells (HAECs) show that IL-13–activated cells generate pathologic mucus independently of immune cells. To determine how HAECs autonomously generate pathologic mucus, we used a magnetic microwire rheometer to characterize the viscoelastic properties of mucus secreted under varying conditions. We found that normal HAEC mucus exhibited viscoelastic liquid behavior and that mucus secreted by IL-13–activated HAECs exhibited solid-like behavior caused by mucin cross-linking. In addition, IL-13–activated HAECs shows increased peroxidase activity in apical secretions, and an overlaid thiolated polymer (thiomer) solution shows an increase in solid behavior that was prevented by peroxidase inhibition. Furthermore, gene expression for thyroid peroxidase (TPO), but not lactoperoxidase (LPO), was increased in IL-13–activated HAECs and both TPO and LPO catalyze the formation of oxidant acids that cross-link thiomer solutions. Finally, gene expression for TPO in airway epithelial brushings was increased in patients with asthma with high airway mucus plug scores. Together, our results show that IL-13–activated HAECs autonomously generated pathologic mucus via peroxidase-mediated cross-linking of mucin polymers.

Authors

Maude A. Liegeois, Margaret Braunreuther, Annabelle R. Charbit, Wilfred W. Raymond, Monica Tang, Prescott G. Woodruff, Stephanie A. Christenson, Mario Castro, Serpil C. Erzurum, Elliot Israel, Nizar N. Jarjour, Bruce D. Levy, Wendy C. Moore, Sally E. Wenzel, Gerald G. Fuller, John V. Fahy

×

HPV8-induced STAT3 activation led keratinocyte stem cell expansion in human actinic keratoses
Huw J. Morgan, Carlotta Olivero, Boris Y. Shorning, Alex Gibbs, Alexandra L. Phillips, Lokapriya Ananthan, Annabelle Xiao Hui Lim, Licia Martuscelli, Cinzia Borgogna, Marco De Andrea, Martin Hufbauer, Richard Goodwin, Baki Akgül, Marisa Gariglio, Girish K. Patel
Huw J. Morgan, Carlotta Olivero, Boris Y. Shorning, Alex Gibbs, Alexandra L. Phillips, Lokapriya Ananthan, Annabelle Xiao Hui Lim, Licia Martuscelli, Cinzia Borgogna, Marco De Andrea, Martin Hufbauer, Richard Goodwin, Baki Akgül, Marisa Gariglio, Girish K. Patel
View: Text | PDF

HPV8-induced STAT3 activation led keratinocyte stem cell expansion in human actinic keratoses

  • Text
  • PDF
Abstract

Despite epidermal turnover, the skin is host to a complex array of microbes, including viruses, such as HPV, which must infect and manipulate skin keratinocyte stem cells (KSCs) to survive. This crosstalk between the virome and KSC populations remains largely unknown. Here, we investigated the effect of HPV8 on KSCs using various mouse models. We observed that the HPV8 early region gene E6 specifically caused Lrig1+ hair follicle junctional zone KSC proliferation and expansion, which would facilitate viral transmission. Within Lrig1+ KSCs specifically, HPV8 E6 bound intracellular p300 to phosphorylate the STAT3 transcriptional regulatory node. This induced ΔNp63 expression, resulting in KSC expansion into the overlying epidermis. HPV8 was associated with 70% of human actinic keratoses. Together, these results define the “hit-and-run” mechanism for HPV8 in human actinic keratosis as an expansion of KSCs, which lack melanosome protection and are thus susceptible to sun light–induced malignant transformation.

Authors

Huw J. Morgan, Carlotta Olivero, Boris Y. Shorning, Alex Gibbs, Alexandra L. Phillips, Lokapriya Ananthan, Annabelle Xiao Hui Lim, Licia Martuscelli, Cinzia Borgogna, Marco De Andrea, Martin Hufbauer, Richard Goodwin, Baki Akgül, Marisa Gariglio, Girish K. Patel

×
  • ← Previous
  • 1
  • 2
  • …
  • 71
  • 72
  • 73
  • …
  • 418
  • 419
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts