Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Research Article

  • 2,813 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 281
  • 282
  • Next →
Gsk3β regulates the resolution of liver ischemia/reperfusion injury via MerTK
Hanwen Zhang, … , Xuehao Wang, Yuan Zhai
Hanwen Zhang, … , Xuehao Wang, Yuan Zhai
Published November 24, 2022
Citation Information: JCI Insight. 2023;8(1):e151819. https://doi.org/10.1172/jci.insight.151819.
View: Text | PDF

Gsk3β regulates the resolution of liver ischemia/reperfusion injury via MerTK

  • Text
  • PDF
Abstract

Although glycogen synthase kinase β (Gsk3β) has been shown to regulate tissue inflammation, whether and how it regulates inflammation resolution versus inflammation activation is unclear. In a murine liver, partial warm ischemia/reperfusion injury (IRI) model, we found that Gsk3β inhibitory phosphorylation increased at both the early-activation and late-resolution stages of the disease. Myeloid Gsk3β deficiency not only alleviated liver injuries, it also facilitated the restoration of liver homeostasis. Depletion of Kupffer cells prior to the onset of liver ischemia diminished the differences between the WT and Gsk3β-KO mice in the activation of liver IRI. However, the resolution of liver IRI remained accelerated in Gsk3β-KO mice. In CD11b-DTR mice, Gsk3β-deficient BM-derived macrophages (BMMs) facilitated the resolution of liver IRI as compared with WT cells. Furthermore, Gsk3β deficiency promoted the reparative phenotype differentiation in vivo in liver-infiltrating macrophages and in vitro in BMMs. Gsk3 pharmacological inhibition promoted the resolution of liver IRI in WT, but not myeloid MerTK-deficient, mice. Thus, Gsk3β regulates liver IRI at both activation and resolution stages of the disease. Gsk3 inactivation enhances the proresolving function of liver-infiltrating macrophages in an MerTK-dependent manner.

Authors

Hanwen Zhang, Ming Ni, Han Wang, Jing Zhang, Dan Jin, Ronald W. Busuttil, Jerzy W. Kupiec-Weglinski, Wei Li, Xuehao Wang, Yuan Zhai

×

Culture impact on the transcriptomic programs of primary and iPSC-derived human alveolar type 2 cells
Konstantinos-Dionysios Alysandratos, … , Carla F. Kim, Darrell N. Kotton
Konstantinos-Dionysios Alysandratos, … , Carla F. Kim, Darrell N. Kotton
Published December 1, 2022
Citation Information: JCI Insight. 2023;8(1):e158937. https://doi.org/10.1172/jci.insight.158937.
View: Text | PDF

Culture impact on the transcriptomic programs of primary and iPSC-derived human alveolar type 2 cells

  • Text
  • PDF
Abstract

Dysfunction of alveolar epithelial type 2 cells (AEC2s), the facultative progenitors of lung alveoli, is implicated in pulmonary disease pathogenesis, highlighting the importance of human in vitro models. However, AEC2-like cells in culture have yet to be directly compared to their in vivo counterparts at single-cell resolution. Here, we performed head-to-head comparisons among the transcriptomes of primary (1°) adult human AEC2s, their cultured progeny, and human induced pluripotent stem cell–derived AEC2s (iAEC2s). We found each population occupied a distinct transcriptomic space with cultured AEC2s (1° and iAEC2s) exhibiting similarities to and differences from freshly purified 1° cells. Across each cell type, we found an inverse relationship between proliferative and maturation states, with preculture 1° AEC2s being most quiescent/mature and iAEC2s being most proliferative/least mature. Cultures of either type of human AEC2s did not generate detectable alveolar type 1 cells in these defined conditions; however, a subset of iAEC2s cocultured with fibroblasts acquired a transitional cell state described in mice and humans to arise during fibrosis or following injury. Hence, we provide direct comparisons of the transcriptomic programs of 1° and engineered AEC2s, 2 in vitro models that can be harnessed to study human lung health and disease.

Authors

Konstantinos-Dionysios Alysandratos, Carolina Garcia-de-Alba, Changfu Yao, Patrizia Pessina, Jessie Huang, Carlos Villacorta-Martin, Olivia T. Hix, Kasey Minakin, Claire L. Burgess, Pushpinder Bawa, Aditi Murthy, Bindu Konda, Michael F. Beers, Barry R. Stripp, Carla F. Kim, Darrell N. Kotton

×

Low c-Kit expression identifies primitive, therapy-resistant CML stem cells
Mansi Shah, … , Robert S. Welner, Ravi Bhatia
Mansi Shah, … , Robert S. Welner, Ravi Bhatia
Published November 22, 2022
Citation Information: JCI Insight. 2023;8(1):e157421. https://doi.org/10.1172/jci.insight.157421.
View: Text | PDF

Low c-Kit expression identifies primitive, therapy-resistant CML stem cells

  • Text
  • PDF
Abstract

Despite the efficacy of tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML), malignant long-term hematopoietic stem cells (LT-HSCs) persist as a source of relapse. However, LT-HSCs are heterogenous and the most primitive, drug-resistant LT-HSC subpopulations are not well characterized. In normal hematopoiesis, self-renewal and long-term reconstitution capacity are enriched within LT-HSCs with low c-Kit expression (c-KITlo). Here, using a transgenic CML mouse model, we found that long-term engraftment and leukemogenic capacity were restricted to c-KITlo CML LT-HSCs. CML LT-HSCs demonstrated enhanced differentiation with expansion of mature progeny following exposure to the c-KIT ligand, stem cell factor (SCF). Conversely, SCF deletion led to depletion of normal LT-HSCs but increase in c-KITlo and total CML LT-HSCs with reduced generation of mature myeloid cells. CML c-KITlo LT-HSCs showed reduced cell cycling and expressed enhanced quiescence and inflammatory gene signatures. SCF administration led to enhanced depletion of CML primitive progenitors but not LT-HSCs after TKI treatment. Human CML LT-HSCs with low or absent c-KIT expression were markedly enriched after TKI treatment. We conclude that CML LT-HSCs expressing low c-KIT levels are enriched for primitive, quiescent, drug-resistant leukemia-initiating cells and represent a critical target for eliminating disease persistence.

Authors

Mansi Shah, Harish Kumar, Shaowei Qiu, Hui Li, Mason Harris, Jianbo He, Ajay Abraham, David K. Crossman, Andrew Paterson, Robert S. Welner, Ravi Bhatia

×

Minocycline-induced disruption of the intestinal FXR/FGF15 axis impairs osteogenesis in mice
Matthew D. Carson, … , Caroline Westwater, Chad M. Novince
Matthew D. Carson, … , Caroline Westwater, Chad M. Novince
Published November 22, 2022
Citation Information: JCI Insight. 2023;8(1):e160578. https://doi.org/10.1172/jci.insight.160578.
View: Text | PDF

Minocycline-induced disruption of the intestinal FXR/FGF15 axis impairs osteogenesis in mice

  • Text
  • PDF
Abstract

Antibiotic-induced shifts in the indigenous gut microbiota influence normal skeletal maturation. Current theory implies that gut microbiota actions on bone occur through a direct gut/bone signaling axis. However, our prior work supports that a gut/liver signaling axis contributes to gut microbiota effects on bone. Our purpose was to investigate the effects of minocycline, a systemic antibiotic treatment for adolescent acne, on pubertal/postpubertal skeletal maturation. Sex-matched specific pathogen–free (SPF) and germ-free (GF) C57BL/6T mice were administered a clinically relevant minocycline dose from age 6–12 weeks. Minocycline caused dysbiotic shifts in the gut bacteriome and impaired skeletal maturation in SPF mice but did not alter the skeletal phenotype in GF mice. Minocycline administration in SPF mice disrupted the intestinal farnesoid X receptor/fibroblast growth factor 15 axis, a gut/liver endocrine axis supporting systemic bile acid homeostasis. Minocycline-treated SPF mice had increased serum conjugated bile acids that were farnesoid X receptor (FXR) antagonists, suppressed osteoblast function, decreased bone mass, and impaired bone microarchitecture and fracture resistance. Stimulating osteoblasts with the serum bile acid profile from minocycline-treated SPF mice recapitulated the suppressed osteogenic phenotype found in vivo, which was mediated through attenuated FXR signaling. This work introduces bile acids as a potentially novel mediator of gut/liver signaling actions contributing to gut microbiota effects on bone.

Authors

Matthew D. Carson, Amy J. Warner, Jessica D. Hathaway-Schrader, Vincenza L. Geiser, Joseph Kim, Joy E. Gerasco, William D. Hill, John J. Lemasters, Alexander V. Alekseyenko, Yongren Wu, Hai Yao, J. Ignacio Aguirre, Caroline Westwater, Chad M. Novince

×

TYRO3 agonist as therapy for glomerular disease
Fang Zhong, … , Kyung Lee, John Cijiang He
Fang Zhong, … , Kyung Lee, John Cijiang He
Published December 1, 2022
Citation Information: JCI Insight. 2023;8(1):e165207. https://doi.org/10.1172/jci.insight.165207.
View: Text | PDF

TYRO3 agonist as therapy for glomerular disease

  • Text
  • PDF
Abstract

Podocyte injury and loss are key drivers of primary and secondary glomerular diseases, such as focal segmental glomerulosclerosis (FSGS) and diabetic kidney disease (DKD). We previously demonstrated the renoprotective role of protein S (PS) and its cognate tyrosine-protein kinase receptor, TYRO3, in models of FSGS and DKD and that their signaling exerts antiapoptotic and antiinflammatory effects to confer protection against podocyte loss. Among the 3 TAM receptors (TYRO3, AXL, and MER), only TYRO3 expression is largely restricted to podocytes, and glomerular TYRO3 mRNA expression negatively correlates with human glomerular disease progression. Therefore, we posited that the agonistic PS/TYRO3 signaling could serve as a potential therapeutic approach to attenuate glomerular disease progression. As PS function is not limited to TYRO3-mediated signal transduction but includes its anticoagulant activity, we focused on the development of TYRO3 agonists as an optimal therapeutic approach to glomerular disease. Among the small-molecule TYRO3 agonistic compounds screened, compound 10 (C-10) showed a selective activation of TYRO3 without any effects on AXL or MER. We also confirmed that C-10 directly binds to TYRO3, but not the other receptors. In vivo, C-10 attenuated proteinuria, glomerular injury, and podocyte loss in mouse models of Adriamycin-induced nephropathy and a db/db model of type 2 diabetes. Moreover, these renoprotective effects of C-10 were lost in Tyro3-knockout mice, indicating that C-10 is a selective agonist of TYRO3 activity that mitigates podocyte injury and glomerular disease. Therefore, C-10, a TYRO3 agonist, could be potentially developed as a new therapy for glomerular disease.

Authors

Fang Zhong, Hong Cai, Jia Fu, Zeguo Sun, Zhengzhe Li, David Bauman, Lois Wang, Bhaskar Das, Kyung Lee, John Cijiang He

×

An RPS19-edited model for Diamond-Blackfan anemia reveals TP53-dependent impairment of hematopoietic stem cell activity
Senthil Velan Bhoopalan, … , Marcin W. Wlodarski, Mitchell J. Weiss
Senthil Velan Bhoopalan, … , Marcin W. Wlodarski, Mitchell J. Weiss
Published November 22, 2022
Citation Information: JCI Insight. 2023;8(1):e161810. https://doi.org/10.1172/jci.insight.161810.
View: Text | PDF

An RPS19-edited model for Diamond-Blackfan anemia reveals TP53-dependent impairment of hematopoietic stem cell activity

  • Text
  • PDF
Abstract

Diamond-Blackfan anemia (DBA) is a genetic blood disease caused by heterozygous loss-of-function mutations in ribosomal protein (RP) genes, most commonly RPS19. The signature feature of DBA is hypoplastic anemia occurring in infants, although some older patients develop multilineage cytopenias with bone marrow hypocellularity. The mechanism of anemia in DBA is not fully understood and even less is known about the pancytopenia that occurs later in life, in part because patient hematopoietic stem and progenitor cells (HSPCs) are difficult to obtain, and the current experimental models are suboptimal. We modeled DBA by editing healthy human donor CD34+ HSPCs with CRISPR/Cas9 to create RPS19 haploinsufficiency. In vitro differentiation revealed normal myelopoiesis and impaired erythropoiesis, as observed in DBA. After transplantation into immunodeficient mice, bone marrow repopulation by RPS19+/− HSPCs was profoundly reduced, indicating hematopoietic stem cell (HSC) impairment. The erythroid and HSC defects resulting from RPS19 haploinsufficiency were partially corrected by transduction with an RPS19-expressing lentiviral vector or by Cas9 disruption of TP53. Our results define a tractable, biologically relevant experimental model of DBA based on genome editing of primary human HSPCs and they identify an associated HSC defect that emulates the pan-hematopoietic defect of DBA.

Authors

Senthil Velan Bhoopalan, Jonathan S. Yen, Thiyagaraj Mayuranathan, Kalin D. Mayberry, Yu Yao, Maria Angeles Lillo Osuna, Yoonjeong Jang, Janaka S.S. Liyanage, Lionel Blanc, Steven R. Ellis, Marcin W. Wlodarski, Mitchell J. Weiss

×

ZEB2 controls kidney stromal progenitor differentiation and inhibits abnormal myofibroblast expansion and kidney fibrosis
Sudhir Kumar, … , David J. Salant, Weining Lu
Sudhir Kumar, … , David J. Salant, Weining Lu
Published November 29, 2022
Citation Information: JCI Insight. 2023;8(1):e158418. https://doi.org/10.1172/jci.insight.158418.
View: Text | PDF

ZEB2 controls kidney stromal progenitor differentiation and inhibits abnormal myofibroblast expansion and kidney fibrosis

  • Text
  • PDF
Abstract

FOXD1+ cell–derived stromal cells give rise to pericytes and fibroblasts that support the kidney vasculature and interstitium but are also major precursors of myofibroblasts. ZEB2 is a SMAD-interacting transcription factor that is expressed in developing kidney stromal progenitors. Here we show that Zeb2 is essential for normal FOXD1+ stromal progenitor development. Specific conditional knockout of mouse Zeb2 in FOXD1+ stromal progenitors (Zeb2 cKO) leads to abnormal interstitial stromal cell development, differentiation, and kidney fibrosis. Immunofluorescent staining analyses revealed abnormal expression of interstitial stromal cell markers MEIS1/2/3, CDKN1C, and CSPG4 (NG2) in newborn and 3-week-old Zeb2-cKO mouse kidneys. Zeb2-deficient FOXD1+ stromal progenitors also took on a myofibroblast fate that led to kidney fibrosis and kidney failure. Cell marker studies further confirmed that these myofibroblasts expressed pericyte and resident fibroblast markers, including PDGFRβ, CSPG4, desmin, GLI1, and NT5E. Notably, increased interstitial collagen deposition associated with loss of Zeb2 in FOXD1+ stromal progenitors was accompanied by increased expression of activated SMAD1/5/8, SMAD2/3, SMAD4, and AXIN2. Thus, our study identifies a key role of ZEB2 in maintaining the cell fate of FOXD1+ stromal progenitors during kidney development, whereas loss of ZEB2 leads to differentiation of FOXD1+ stromal progenitors into myofibroblasts and kidney fibrosis.

Authors

Sudhir Kumar, Xueping Fan, Hila Milo Rasouly, Richa Sharma, David J. Salant, Weining Lu

×

The tryptophan-metabolizing enzyme indoleamine 2,3-dioxygenase 1 regulates polycystic kidney disease progression
Dustin T. Nguyen, … , Jelena Klawitter, Katharina Hopp
Dustin T. Nguyen, … , Jelena Klawitter, Katharina Hopp
Published November 24, 2022
Citation Information: JCI Insight. 2023;8(1):e154773. https://doi.org/10.1172/jci.insight.154773.
View: Text | PDF

The tryptophan-metabolizing enzyme indoleamine 2,3-dioxygenase 1 regulates polycystic kidney disease progression

  • Text
  • PDF
Abstract

Autosomal dominant polycystic kidney disease (ADPKD), the most common monogenic nephropathy, is characterized by phenotypic variability that exceeds genic effects. Dysregulated metabolism and immune cell function are key disease modifiers. The tryptophan metabolites, kynurenines, produced through indoleamine 2,3-dioxygenase 1 (IDO1), are known immunomodulators. Here, we study the role of tryptophan metabolism in PKD using an orthologous disease model (C57BL/6J Pkd1RC/RC). We found elevated kynurenine and IDO1 levels in Pkd1RC/RC kidneys versus wild type. Further, IDO1 levels were increased in ADPKD cell lines. Genetic Ido1 loss in Pkd1RC/RC animals resulted in reduced PKD severity, as measured by cystic index and percentage kidney weight normalized to body weight. Consistent with an immunomodulatory role of kynurenines, Pkd1RC/RC;Ido1–/– mice presented with significant changes in the cystic immune microenvironment (CME) versus controls. Kidney macrophage numbers decreased and CD8+ T cell numbers increased, both known PKD modulators. Also, pharmacological IDO1 inhibition in Pkd1RC/RC mice and kidney-specific Pkd2-knockout mice with rapidly progressive PKD resulted in less severe PKD versus controls, with changes in the CME similar to those in the genetic model. Our data suggest that tryptophan metabolism is dysregulated in ADPKD and that its inhibition results in changes to the CME and slows disease progression, making IDO1 a therapeutic target for ADPKD.

Authors

Dustin T. Nguyen, Emily K. Kleczko, Nidhi Dwivedi, Marie-Louise T. Monaghan, Berenice Y. Gitomer, Michel B. Chonchol, Eric T. Clambey, Raphael A. Nemenoff, Jelena Klawitter, Katharina Hopp

×

HGFAC is a ChREBP-regulated hepatokine that enhances glucose and lipid homeostasis
Ashot Sargsyan, … , Linus T. Tsai, Mark A. Herman
Ashot Sargsyan, … , Linus T. Tsai, Mark A. Herman
Published November 22, 2022
Citation Information: JCI Insight. 2023;8(1):e153740. https://doi.org/10.1172/jci.insight.153740.
View: Text | PDF

HGFAC is a ChREBP-regulated hepatokine that enhances glucose and lipid homeostasis

  • Text
  • PDF
Abstract

Carbohydrate response element–binding protein (ChREBP) is a carbohydrate-sensing transcription factor that regulates both adaptive and maladaptive genomic responses in coordination of systemic fuel homeostasis. Genetic variants in the ChREBP locus associate with diverse metabolic traits in humans, including circulating lipids. To identify novel ChREBP-regulated hepatokines that contribute to its systemic metabolic effects, we integrated ChREBP ChIP-Seq analysis in mouse liver with human genetic and genomic data for lipid traits and identified hepatocyte growth factor activator (HGFAC) as a promising ChREBP-regulated candidate in mice and humans. HGFAC is a protease that activates the pleiotropic hormone hepatocyte growth factor. We demonstrate that HGFAC-KO mice had phenotypes concordant with putative loss-of-function variants in human HGFAC. Moreover, in gain- and loss-of-function genetic mouse models, we demonstrate that HGFAC enhanced lipid and glucose homeostasis, which may be mediated in part through actions to activate hepatic PPARγ activity. Together, our studies show that ChREBP mediated an adaptive response to overnutrition via activation of HGFAC in the liver to preserve glucose and lipid homeostasis.

Authors

Ashot Sargsyan, Ludivine Doridot, Sarah A. Hannou, Wenxin Tong, Harini Srinivasan, Rachael Ivison, Ruby Monn, Henry H. Kou, Jonathan M. Haldeman, Michelle Arlotto, Phillip J. White, Paul A. Grimsrud, Inna Astapova, Linus T. Tsai, Mark A. Herman

×

Aorta- and liver-generated TMAO enhances trained immunity for increased inflammation via ER stress/mitochondrial ROS/glycolysis pathways
Fatma Saaoud, … , Hong Wang, Xiaofeng Yang
Fatma Saaoud, … , Hong Wang, Xiaofeng Yang
Published November 17, 2022
Citation Information: JCI Insight. 2023;8(1):e158183. https://doi.org/10.1172/jci.insight.158183.
View: Text | PDF

Aorta- and liver-generated TMAO enhances trained immunity for increased inflammation via ER stress/mitochondrial ROS/glycolysis pathways

  • Text
  • PDF
Abstract

We determined whether gut microbiota-produced trimethylamine (TMA) is oxidized into trimethylamine N-oxide (TMAO) in nonliver tissues and whether TMAO promotes inflammation via trained immunity (TI). We found that endoplasmic reticulum (ER) stress genes were coupregulated with MitoCarta genes in chronic kidney diseases (CKD); TMAO upregulated 190 genes in human aortic endothelial cells (HAECs); TMAO synthesis enzyme flavin-containing monooxygenase 3 (FMO3) was expressed in human and mouse aortas; TMAO transdifferentiated HAECs into innate immune cells; TMAO phosphorylated 12 kinases in cytosol via its receptor PERK and CREB, and integrated with PERK pathways; and PERK inhibitors suppressed TMAO-induced ICAM-1. TMAO upregulated 3 mitochondrial genes, downregulated inflammation inhibitor DARS2, and induced mitoROS, and mitoTEMPO inhibited TMAO-induced ICAM-1. β-Glucan priming, followed by TMAO restimulation, upregulated TNF-α by inducing metabolic reprogramming, and glycolysis inhibitor suppressed TMAO-induced ICAM-1. Our results have provided potentially novel insights regarding TMAO roles in inducing EC activation and innate immune transdifferentiation and inducing metabolic reprogramming and TI for enhanced vascular inflammation, and they have provided new therapeutic targets for treating cardiovascular diseases (CVD), CKD-promoted CVD, inflammation, transplantation, aging, and cancer.

Authors

Fatma Saaoud, Lu Liu, Keman Xu, Ramon Cueto, Ying Shao, Yifan Lu, Yu Sun, Nathaniel W. Snyder, Sheng Wu, Ling Yang, Yan Zhou, David L. Williams, Chuanfu Li, Laisel Martinez, Roberto I. Vazquez-Padron, Huaqing Zhao, Xiaohua Jiang, Hong Wang, Xiaofeng Yang

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 281
  • 282
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts