`NK cell–mediated regulation of antigen-specific T cells can contribute to and exacerbate chronic viral infection, but the protective mechanisms against NK cell–mediated attack on T cell immunity are poorly understood. Here, we show that progranulin (PGRN) can reduce NK cell cytotoxicity through reduction of NK cell expansion, granzyme B transcription, and NK cell–mediated lysis of target cells. Following infection with the lymphocytic choriomeningitis virus (LCMV), PGRN levels increased — a phenomenon dependent on the presence of macrophages and type I IFN signaling. Absence of PGRN in mice (Grn–/–) resulted in enhanced NK cell activity, increased NK cell–mediated killing of antiviral T cells, reduced antiviral T cell immunity, and increased viral burden, culminating in increased liver immunopathology. Depletion of NK cells restored antiviral immunity and alleviated pathology during infection in Grn–/– mice. In turn, PGRN treatment improved antiviral T cell immunity. Taken together, we identified PGRN as a critical factor capable of reducing NK cell–mediated attack of antiviral T cells.
Anfei Huang, Prashant V. Shinde, Jun Huang, Tina Senff, Haifeng C. Xu, Cassandra Margotta, Dieter Häussinger, Thomas E. Willnow, Jinping Zhang, Aleksandra A. Pandyra, Jörg Timm, Sascha Weggen, Karl S. Lang, Philipp A. Lang
Research shows that rats and humans on a high-fat diet (HFD) are less sensitive to satiety signals known to act via vagal afferent pathways. We hypothesize that HFD causes an upregulation of 2-pore domain potassium channels, resulting in hyperpolarization of nodose ganglia (NG) and decreased vagal response to satiety signals, which contribute to hyperphagia. We show that a 2-week HFD caused an upregulation of 2-pore domain TWIK-related spinal cord K+ (TRESK) and TWIK-related acid-sensitive K+ 1 (TASK1) channels by 330% ± 50% and 60% ± 20%, respectively, in NG. Patch-clamp studies of isolated NG neurons demonstrated a decrease in excitability. In vivo single-unit NG recordings showed that a 2-week HFD led to a 55% reduction in firing frequency in response to CCK-8 or leptin stimulation. NG electroporation with TRESK siRNA restored NG responsiveness to CCK-8 and leptin. Rats fed a 2-week HFD consumed ~40% more calories compared with controls. Silencing NG TRESK but not TASK1 channel expression in HFD-fed rats restored normal calorie consumption. In conclusion, HFD caused upregulation of TRESK channels, resulting in NG hyperpolarization and decreased vagal responsiveness to satiety signals. This finding provides a pharmacological target to prevent or treat HFD-induced hyperphagia.
Gintautas Grabauskas, Xiaoyin Wu, ShiYi Zhou, JiYao Li, Jun Gao, Chung Owyang
Chemotherapy-induced peripheral neuropathy is one of the most prevalent dose-limiting toxicities of anticancer therapy. Development of effective therapies to prevent chemotherapy-induced neuropathies could be enabled by a mechanistic understanding of axonal breakdown following exposure to neuropathy-causing agents. Here, we reveal the molecular mechanisms underlying axon degeneration induced by 2 widely used chemotherapeutic agents with distinct mechanisms of action: vincristine and bortezomib. We showed previously that genetic deletion of SARM1 blocks vincristine-induced neuropathy and demonstrate here that it also prevents axon destruction following administration of bortezomib in vitro and in vivo. Using cultured neurons, we found that vincristine and bortezomib converge on a core axon degeneration program consisting of nicotinamide mononucleotide NMNAT2, SARM1, and loss of NAD+ but engage different upstream mechanisms that closely resemble Wallerian degeneration after vincristine and apoptosis after bortezomib. We could inhibit the final common axon destruction pathway by preserving axonal NAD+ levels or expressing a candidate gene therapeutic that inhibits SARM1 in vitro. We suggest that these approaches may lead to therapies for vincristine- and bortezomib-induced neuropathies and possibly other forms of peripheral neuropathy.
Stefanie Geisler, Ryan A. Doan, Galen C. Cheng, Aysel Cetinkaya-Fisgin, Shay X. Huang, Ahmet Höke, Jeffrey Milbrandt, Aaron DiAntonio
Cardiac pressure overload — for example, due to aortic stenosis — induces irreversible myocardial dysfunction, cardiomyocyte hypertrophy, and interstitial fibrosis in patients. In contrast with adult mice, neonatal mice can efficiently regenerate the heart after injury in the first week after birth. To decipher whether insufficient cardiac regeneration contributes to the progression of pressure overload–dependent disease, we established a transverse aortic constriction protocol in neonatal mice (nTAC). nTAC in the nonregenerative stage (at P7) induced cardiac dysfunction, myocardial fibrosis, and cardiomyocyte hypertrophy. In contrast, nTAC in the regenerative stage (at P1) largely prevented these maladaptive responses and was, in particular, associated with enhanced myocardial angiogenesis and increased cardiomyocyte proliferation, which both supported adaptation during nTAC. A comparative transcriptomic analysis between hearts after regenerative versus nonregenerative nTAC suggested the transcription factor GATA4 as master regulator of the regenerative gene program. Indeed, cardiomyocyte-specific deletion of GATA4 converted the regenerative nTAC into a nonregenerative, maladaptive response. Our new nTAC model can be used to identify mediators of adaptation during pressure overload and to discover potential therapeutic strategies.
Mona Malek Mohammadi, Aya Abouissa, Azizah Isyatul, Yinou Xie, Julio Cordero, Amir Shirvani, Anna Gigina, Maren Engelhardt, Felix A. Trogisch, Robert Geffers, Gergana Dobreva, Johann Bauersachs, Joerg Heineke
Targeting the dynamic tumor immune microenvironment (TIME) can provide effective therapeutic strategies for cancer. Neutrophils are the predominant leukocyte population in mice and humans, and mounting evidence implicates these cells during tumor growth and metastasis. Neutrophil extracellular traps (NETs) are networks of extracellular neutrophil DNA fibers that are capable of binding tumor cells to support metastatic progression. Here, we demonstrate that circulating NET levels are elevated in advanced esophageal, gastric, and lung cancer patients compared with local cancers and healthy controls. Using preclinical murine models of lung and colon cancer, in combination with intravital video microscopy, we show that NETs functionally regulate disease progression and that blocking NETosis through multiple strategies significantly inhibits spontaneous metastasis to the lung and liver. Furthermore, we show how inhibiting tumor-induced NETs decreases cancer cell adhesion to liver sinusoids following intrasplenic injection — a mechanism previously thought to be driven primarily by exogenous stimuli. Thus, in addition to neutrophil abundance, the functional contribution of NETosis within the TIME has critical translational relevance and represents a promising target to impede metastatic dissemination.
Roni F. Rayes, Jack G. Mouhanna, Ioana Nicolau, France Bourdeau, Betty Giannias, Simon Rousseau, Daniela Quail, Logan Walsh, Veena Sangwan, Nicholas Bertos, Jonathan Cools-Lartigue, Lorenzo E. Ferri, Jonathan D. Spicer
Pancreatic ductal adenocarcinoma (PDAC) requires mitochondrial oxidative phosphorylation (OXPHOS) to fuel its growth; however, broadly inhibiting this pathway might also disrupt essential mitochondrial functions in normal tissues. PDAC cells exhibit abnormally fragmented mitochondria that are essential to the oncogenicity of PDAC, but it was unclear if this mitochondrial feature was a valid therapeutic target. Here, we present evidence that normalizing the fragmented mitochondria of pancreatic cancer via the process of mitochondrial fusion reduces OXPHOS, which correlates with suppressed tumor growth and improved survival in preclinical models. Mitochondrial fusion was achieved by genetic or pharmacologic inhibition of dynamin-related protein-1 (Drp1) or through overexpression of mitofusin-2 (Mfn2). Notably, we found that oral leflunomide, an FDA-approved arthritis drug, promoted a 2-fold increase in Mfn2 expression in tumors and was repurposed as a chemotherapeutic agent, improving the median survival of mice with spontaneous tumors by 50% compared with vehicle. We found that the chief tumor-suppressive mechanism of mitochondrial fusion was enhanced mitophagy, which proportionally reduced mitochondrial mass and ATP production. These data suggest that mitochondrial fusion is a specific and druggable regulator of pancreatic cancer growth that could be rapidly translated to the clinic.
Meifang Yu, Nicholas D. Nguyen, Yanqing Huang, Daniel Lin, Tara N. Fujimoto, Jessica M. Molkentine, Amit Deorukhkar, Ya’an Kang, F. Anthony San Lucas, Conrad J. Fernandes, Eugene J. Koay, Sonal Gupta, Haoqiang Ying, Albert C. Koong, Joseph M. Herman, Jason B. Fleming, Anirban Maitra, Cullen M. Taniguchi
Tissue remodeling/fibrosis is a major feature of all fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). It is underpinned by accumulating extracellular matrix (ECM) proteins. Fibulin-1c (Fbln1c) is a matricellular ECM protein associated with lung fibrosis in both humans and mice and stabilizes collagen formation. Here we discovered that Fbln1c was increased in the lung tissues of patients with IPF and experimental bleomycin-induced pulmonary fibrosis. Fbln1c-deficient (Fbln1c–/–) mice had reduced pulmonary remodeling/fibrosis and improved lung function after bleomycin challenge. Fbln1c interacted with fibronectin, periostin, and tenascin-C in collagen deposits following bleomycin challenge. In a potentially novel mechanism of fibrosis, Fbln1c bound to latent TGF-β–binding protein 1 (LTBP1) to induce TGF-β activation and mediated downstream Smad3 phosphorylation/signaling. This process increased myofibroblast numbers and collagen deposition. Fbln1c and LTBP1 colocalized in lung tissues from patients with IPF. Thus, Fbln1c may be a novel driver of TGF-β–induced fibrosis involving LTBP1 and may be an upstream therapeutic target.
Gang Liu, Marion A. Cooley, Andrew G. Jarnicki, Theo Borghuis, Prema M. Nair, Gavin Tjin, Alan C. Hsu, Tatt Jhong Haw, Michael Fricker, Celeste L. Harrison, Bernadette Jones, Nicole G. Hansbro, Peter A. Wark, Jay C. Horvat, W. Scott Argraves, Brian G. Oliver, Darryl A. Knight, Janette K. Burgess, Philip M. Hansbro
Glucagon and insulin are commonly believed to have counteracting effects on blood glucose levels. However, recent studies have demonstrated that glucagon has a physiologic role to activate β cells and enhance insulin secretion. To date, the actions of glucagon have been studied mostly in fasting or hypoglycemic states, yet it is clear that mixed-nutrient meals elicit secretion of both glucagon and insulin, suggesting that glucagon also contributes to glucose regulation in the postprandial state. We hypothesized that the elevated glycemia seen in the fed state would allow glucagon to stimulate insulin secretion and reduce blood glucose. In fact, exogenous glucagon given under fed conditions did robustly stimulate insulin secretion and lower glycemia. Exogenous glucagon given to fed Gcgr:Glp1rβcell–/– mice failed to stimulate insulin secretion or reduce glycemia, demonstrating the importance of an insulinotropic glucagon effect. The action of endogenous glucagon to reduce glycemia in the fed state was tested with administration of alanine, a potent glucagon secretagogue. Alanine raised blood glucose in fasted WT mice or fed Gcgr:Glp1rβcell–/– mice, conditions where glucagon is unable to stimulate β cell activity. However, alanine given to fed WT mice produced a decrease in glycemia, along with elevated insulin and glucagon levels. Overall, our data support a model in which glucagon serves as an insulinotropic hormone in the fed state and complements rather than opposes insulin action to maintain euglycemia.
Megan E. Capozzi, Jacob B. Wait, Jepchumba Koech, Andrew N. Gordon, Reilly W. Coch, Berit Svendsen, Brian Finan, David A. D’Alessio, Jonathan E. Campbell
Adoptive T cell therapy (ACT) has been established as an efficacious methodology for the treatment of cancer. Identifying targets to enhance the antigen recognition, functional capacity, and longevity of T cells has the potential to broaden the applicability of these approaches in the clinic. We previously reported that targeting expression of phosphotyrosine phosphatase, nonreceptor type 22 (PTPN22) in effector CD8+ T cells enhances the efficacy of ACT for tumor clearance in mice. In the current work, we demonstrate that, upon ACT, PTPN22-deficient effector CD8+ T cells afforded greater protection against tumors expressing very low-affinity antigen but did not survive long term in vivo. Persistence of CD8+ T cells following tumor clearance was improved by ACT of memory phenotype cells that have a distinct metabolic phenotype, as compared with effector T cells. Importantly, PTPN22-deficient T cells have comparable capacity to form long-lived memory cells in vivo but enhanced antitumor activity in vivo and effector responses ex vivo. These findings provide key insights into the regulation of effector and memory T cell responses in vivo and indicate that PTPN22 is a rational target to improve ACT for cancer.
Rebecca J. Brownlie, David Wright, Rose Zamoyska, Robert J. Salmond
Pancreatic ductal adenocarcinoma (PDA) is a major cause of cancer-related death, with limited therapeutic options available. This highlights the need for improved understanding of the biology of PDA progression, a highly complex and dynamic process, featuring changes in cancer cells and stromal cells. A comprehensive characterization of PDA cancer cell and stromal cell heterogeneity during disease progression is lacking. In this study, we aimed to profile cell populations and understand their phenotypic changes during PDA progression. To that end, we used single-cell RNA–sequencing technology to agnostically profile cell heterogeneity during different stages of PDA progression in genetically engineered mouse models. Our data indicate that an epithelial-mesenchymal transition of cancer cells accompanies tumor progression in addition to distinct populations of macrophages with increasing inflammatory features. We also noted the existence of 3 distinct molecular subtypes of fibroblasts in the normal mouse pancreas, which ultimately gave rise to 2 distinct populations of fibroblasts in advanced PDA, supporting recent reports on intratumor fibroblast heterogeneity. Our data also suggest that cancer cells and fibroblasts may be dynamically regulated by epigenetic mechanisms. This study systematically describes the landscape of cellular heterogeneity during the progression of PDA and has the potential to act as a resource in the development of therapeutic strategies against specific cell populations of the disease.
Abdel Nasser Hosein, Huocong Huang, Zhaoning Wang, Kamalpreet Parmar, Wenting Du, Jonathan Huang, Anirban Maitra, Eric Olson, Udit Verma, Rolf A. Brekken
No posts were found with this tag.