Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

  • 4,127 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 281
  • 282
  • 283
  • …
  • 412
  • 413
  • Next →
O-GlcNAc transferase suppresses necroptosis and liver fibrosis
Bichen Zhang, Min-Dian Li, Ruonan Yin, Yuyang Liu, Yunfan Yang, Kisha A. Mitchell-Richards, Jin Hyun Nam, Rui Li, Li Wang, Yasuko Iwakiri, Dongjun Chung, Marie E. Robert, Barbara E. Ehrlich, Anton M. Bennett, Jun Yu, Michael H. Nathanson, Xiaoyong Yang
Bichen Zhang, Min-Dian Li, Ruonan Yin, Yuyang Liu, Yunfan Yang, Kisha A. Mitchell-Richards, Jin Hyun Nam, Rui Li, Li Wang, Yasuko Iwakiri, Dongjun Chung, Marie E. Robert, Barbara E. Ehrlich, Anton M. Bennett, Jun Yu, Michael H. Nathanson, Xiaoyong Yang
View: Text | PDF

O-GlcNAc transferase suppresses necroptosis and liver fibrosis

  • Text
  • PDF
Abstract

Worldwide, over a billion people suffer from chronic liver diseases, which often lead to fibrosis and then cirrhosis. Treatments for fibrosis remain experimental, in part because no unifying mechanism has been identified that initiates liver fibrosis. Necroptosis has been implicated in multiple liver diseases. Here, we report that O-linked β-N-acetylglucosamine (O-GlcNAc) modification protects against hepatocyte necroptosis and initiation of liver fibrosis. Decreased O-GlcNAc levels were seen in patients with alcoholic liver cirrhosis and in mice with ethanol-induced liver injury. Liver-specific O-GlcNAc transferase–KO (OGT-LKO) mice exhibited hepatomegaly and ballooning degeneration at an early age and progressed to liver fibrosis and portal inflammation by 10 weeks of age. OGT-deficient hepatocytes underwent excessive necroptosis and exhibited elevated protein expression levels of receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL), which are key mediators of necroptosis. Furthermore, glycosylation of RIPK3 by OGT is associated with reduced RIPK3 protein stability. Taken together, these findings identify OGT as a key suppressor of hepatocyte necroptosis, and OGT-LKO mice may serve as an effective spontaneous genetic model of liver fibrosis.

Authors

Bichen Zhang, Min-Dian Li, Ruonan Yin, Yuyang Liu, Yunfan Yang, Kisha A. Mitchell-Richards, Jin Hyun Nam, Rui Li, Li Wang, Yasuko Iwakiri, Dongjun Chung, Marie E. Robert, Barbara E. Ehrlich, Anton M. Bennett, Jun Yu, Michael H. Nathanson, Xiaoyong Yang

×

Sex-specific differences in endoplasmic reticulum aminopeptidase 1 modulation influence blood pressure and renin-angiotensin system responses
Sanjay Ranjit, Jian Yao Wong, Jia W. Tan, Chee Sin Tay, Jessica M. Lee, Kelly Yin Han Wong, Luminita H. Pojoga, Danielle L. Brooks, Amanda E. Garza, Stephen A. Maris, Isis Akemi Katayama, Jonathan S. Williams, Alicia Rivera, Gail K. Adler, Gordon H. Williams, Jose R. Romero
Sanjay Ranjit, Jian Yao Wong, Jia W. Tan, Chee Sin Tay, Jessica M. Lee, Kelly Yin Han Wong, Luminita H. Pojoga, Danielle L. Brooks, Amanda E. Garza, Stephen A. Maris, Isis Akemi Katayama, Jonathan S. Williams, Alicia Rivera, Gail K. Adler, Gordon H. Williams, Jose R. Romero
View: Text | PDF

Sex-specific differences in endoplasmic reticulum aminopeptidase 1 modulation influence blood pressure and renin-angiotensin system responses

  • Text
  • PDF
Abstract

Salt sensitivity of blood pressure (SSBP) and hypertension are common, but the underlying mechanisms remain unclear. Endoplasmic reticulum aminopeptidase 1 (ERAP1) degrades angiotensin II (ANGII). We hypothesized that decreasing ERAP1 increases BP via ANGII-mediated effects on aldosterone (ALDO) production and/or renovascular function. Compared with WT littermate mice, ERAP1-deficient (ERAP1+/–) mice had increased tissue ANGII, systolic and diastolic BP, and SSBP, indicating that ERAP1 deficiency leads to volume expansion. However, the mechanisms underlying the volume expansion differed according to sex. Male ERAP1+/– mice had increased ALDO levels and normal renovascular responses to volume expansion (decreased resistive and pulsatility indices and increased glomerular volume). In contrast, female ERAP1+/– mice had normal ALDO levels but lacked normal renovascular responses. In humans, ERAP1 rs30187, a loss-of-function gene variant that reduces ANGII degradation in vitro, is associated with hypertension. In our cohort from the Hypertensive Pathotype (HyperPATH) Consortium, there was a significant dose-response association between rs30187 risk alleles and systolic and diastolic BP as well as renal plasma flow in men, but not in women. Thus, lowering ERAP1 led to volume expansion and increased BP. In males, the volume expansion was due to elevated ALDO with normal renovascular function, whereas in females the volume expansion was due to impaired renovascular function with normal ALDO levels.

Authors

Sanjay Ranjit, Jian Yao Wong, Jia W. Tan, Chee Sin Tay, Jessica M. Lee, Kelly Yin Han Wong, Luminita H. Pojoga, Danielle L. Brooks, Amanda E. Garza, Stephen A. Maris, Isis Akemi Katayama, Jonathan S. Williams, Alicia Rivera, Gail K. Adler, Gordon H. Williams, Jose R. Romero

×

OX40 expression in neutrophils promotes hepatic ischemia/reperfusion injury
Hua Jin, Chunpan Zhang, Chengyang Sun, Xinyan Zhao, Dan Tian, Wen Shi, Yue Tian, Kai Liu, Guangyong Sun, Hufeng Xu, Dong Zhang
Hua Jin, Chunpan Zhang, Chengyang Sun, Xinyan Zhao, Dan Tian, Wen Shi, Yue Tian, Kai Liu, Guangyong Sun, Hufeng Xu, Dong Zhang
View: Text | PDF

OX40 expression in neutrophils promotes hepatic ischemia/reperfusion injury

  • Text
  • PDF
Abstract

Neutrophils play critical roles during the initial phase of hepatic ischemia/reperfusion injury (HIRI). However, the regulation of neutrophil activation, infiltration, and proinflammatory cytokine secretion has not been fully elucidated. In this study, we revealed that OX40 was expressed by neutrophils, its expression in neutrophils was time-dependently upregulated following HIRI, and Ox40 knockout markedly alleviated liver injury. Compared with wild-type neutrophils, the adoptive transfer of Ox40–/– neutrophils decreased HIRI in neutrophil-depleted Rag2/Il2rg–/– or Ox40–/– mice. Moreover, consistently, the in vitro experiments showed that Ox40 not only prolonged neutrophil survival but also promoted proinflammatory cytokines, ROS production, and even neutrophil chemotaxis. Further investigation demonstrated that the knockout of Ox40 in neutrophils inhibited NF-κB signaling via the TRAF1/2/4 and IKKα/IKKβ/IκBα pathways. OX40L and OX86 stimulation could enhance neutrophil activation and survival in vitro and in vivo. In conclusion, our study provides a new understanding of OX40, which is expressed not only in adaptive immune cells but also in innate immune cells, i.e., neutrophils, contributing to the activation and survival of neutrophils. These findings provide a novel potential therapeutic target for the prevention of HIRI during liver transplantation or hepatic surgery.

Authors

Hua Jin, Chunpan Zhang, Chengyang Sun, Xinyan Zhao, Dan Tian, Wen Shi, Yue Tian, Kai Liu, Guangyong Sun, Hufeng Xu, Dong Zhang

×

eIF4A inhibition circumvents uncontrolled DNA replication mediated by 4E-BP1 loss in pancreatic cancer
David Müller, Sauyeun Shin, Théo Goullet de Rugy, Rémi Samain, Romain Baer, Manon Strehaiano, Laia Masvidal-Sanz, Julie Guillermet-Guibert, Christine Jean, Yoshinori Tsukumo, Nahum Sonenberg, Frédéric Marion, Nicolas Guilbaud, Jean-Sébastien Hoffmann, Ola Larsson, Corinne Bousquet, Stéphane Pyronnet, Yvan Martineau
David Müller, Sauyeun Shin, Théo Goullet de Rugy, Rémi Samain, Romain Baer, Manon Strehaiano, Laia Masvidal-Sanz, Julie Guillermet-Guibert, Christine Jean, Yoshinori Tsukumo, Nahum Sonenberg, Frédéric Marion, Nicolas Guilbaud, Jean-Sébastien Hoffmann, Ola Larsson, Corinne Bousquet, Stéphane Pyronnet, Yvan Martineau
View: Text | PDF

eIF4A inhibition circumvents uncontrolled DNA replication mediated by 4E-BP1 loss in pancreatic cancer

  • Text
  • PDF
Abstract

Pancreatic ductal adenocarcinoma (PDAC) relies on hyperactivated protein synthesis. Consistently, human and mouse PDAC lose expression of the translational repressor and mTOR target 4E-BP1. Using genome-wide polysome profiling, we here explore mRNAs whose translational efficiencies depend on the mTOR/4E-BP1 axis in pancreatic cancer cells. We identified a functional enrichment for mRNAs encoding DNA replication and repair proteins, including RRM2 and CDC6. Consequently, 4E-BP1 depletion favors DNA repair and renders DNA replication insensitive to mTOR inhibitors, in correlation with a sustained protein expression of CDC6 and RRM2, which is inversely correlated with 4E-BP1 expression in PDAC patient samples. DNA damage and pancreatic lesions induced by an experimental pancreatitis model uncover that 4E-BP1/2–deleted mice display an increased acinar cell proliferation and a better recovery than WT animals. Targeting translation, independently of 4E-BP1 status, using eIF4A RNA helicase inhibitors (silvestrol derivatives) selectively modulates translation and limits CDC6 expression and DNA replication, leading to reduced PDAC tumor growth. In summary, 4E-BP1 expression loss during PDAC development induces selective changes in translation of mRNA encoding DNA replication and repair protein. Importantly, targeting protein synthesis by eIF4A inhibitors circumvents PDAC resistance to mTOR inhibition.

Authors

David Müller, Sauyeun Shin, Théo Goullet de Rugy, Rémi Samain, Romain Baer, Manon Strehaiano, Laia Masvidal-Sanz, Julie Guillermet-Guibert, Christine Jean, Yoshinori Tsukumo, Nahum Sonenberg, Frédéric Marion, Nicolas Guilbaud, Jean-Sébastien Hoffmann, Ola Larsson, Corinne Bousquet, Stéphane Pyronnet, Yvan Martineau

×

Multiple cancer-specific antigens are targeted by a chimeric antibody receptor on a single cancer cell
Yanran He, Karin Schreiber, Steven P. Wolf, Frank Wen, Catharina Steentoft, Jonathan Zerweck, Madeline Steiner, Preeti Sharma, H. Michael Shepard, Avery Posey, Carl H. June, Ulla Mandel, Henrik Clausen, Matthias Leisegang, Stephen C. Meredith, David M. Kranz, Hans Schreiber
Yanran He, Karin Schreiber, Steven P. Wolf, Frank Wen, Catharina Steentoft, Jonathan Zerweck, Madeline Steiner, Preeti Sharma, H. Michael Shepard, Avery Posey, Carl H. June, Ulla Mandel, Henrik Clausen, Matthias Leisegang, Stephen C. Meredith, David M. Kranz, Hans Schreiber
View: Text | PDF | Corrigendum

Multiple cancer-specific antigens are targeted by a chimeric antibody receptor on a single cancer cell

  • Text
  • PDF
Abstract

Human cancer cells were eradicated by adoptive transfer of T cells transduced with a chimeric antigen receptor (CAR) made from an antibody (237Ab) that is highly specific for the murine Tn-glycosylated podoplanin (Tn-PDPN). The objectives were to determine the specificity of these CAR-transduced T (CART) cells and the mechanism for the absence of relapse. We show that although the 237Ab bound only to cell lines expressing murine Tn-PDPN, the 237Ab-derived 237CART cells lysed multiple different human and murine cancers not predicted by the 237Ab binding. Nevertheless, the 237CART cell reactivities remained cancer specific because all recognitions were dependent on the Tn glycosylation that resulted from COSMC mutations that were not present in normal tissues. While Tn was required for the recognition by 237CART, Tn alone was not sufficient for 237CART cell activation. Activation of 237CART cells required peptide backbone recognition but tolerated substitutions of up to 5 of the 7 amino acid residues in the motif recognized by 237Ab. Together, these findings demonstrate what we believe is a new principle whereby simultaneous recognition of multiple independent Tn-glycopeptide antigens on a cancer cell makes tumor escape due to antigen loss unlikely.

Authors

Yanran He, Karin Schreiber, Steven P. Wolf, Frank Wen, Catharina Steentoft, Jonathan Zerweck, Madeline Steiner, Preeti Sharma, H. Michael Shepard, Avery Posey, Carl H. June, Ulla Mandel, Henrik Clausen, Matthias Leisegang, Stephen C. Meredith, David M. Kranz, Hans Schreiber

×

NK cell defects in X-linked pigmentary reticulate disorder
Petro Starokadomskyy, Katelynn M. Wilton, Konrad Krzewski, Adam Lopez, Luis Sifuentes-Dominguez, Brittany Overlee, Qing Chen, Ann Ray, Aleksandra Gil-Krzewska, Mary Peterson, Lisa N. Kinch, Luis Rohena, Eyal Grunebaum, Andrew R. Zinn, Nick V. Grishin, Daniel D. Billadeau, Ezra Burstein
Petro Starokadomskyy, Katelynn M. Wilton, Konrad Krzewski, Adam Lopez, Luis Sifuentes-Dominguez, Brittany Overlee, Qing Chen, Ann Ray, Aleksandra Gil-Krzewska, Mary Peterson, Lisa N. Kinch, Luis Rohena, Eyal Grunebaum, Andrew R. Zinn, Nick V. Grishin, Daniel D. Billadeau, Ezra Burstein
View: Text | PDF

NK cell defects in X-linked pigmentary reticulate disorder

  • Text
  • PDF
Abstract

X-linked reticulate pigmentary disorder (XLPDR, Mendelian Inheritance in Man #301220) is a rare syndrome characterized by recurrent infections and sterile multiorgan inflammation. The syndrome is caused by an intronic mutation in POLA1, the gene encoding the catalytic subunit of DNA polymerase-α (Pol-α), which is responsible for Okazaki fragment synthesis during DNA replication. Reduced POLA1 expression in this condition triggers spontaneous type I interferon expression, which can be linked to the autoinflammatory manifestations of the disease. However, the history of recurrent infections in this syndrome is as yet unexplained. Here we report that patients with XLPDR have reduced NK cell cytotoxic activity and decreased numbers of NK cells, particularly differentiated, stage V, cells (CD3–CD56dim). This phenotype is reminiscent of hypomorphic mutations in MCM4, which encodes a component of the minichromosome maintenance (MCM) helicase complex that is functionally linked to Pol-α during the DNA replication process. We find that POLA1 deficiency leads to MCM4 depletion and that both can impair NK cell natural cytotoxicity and show that this is due to a defect in lytic granule polarization. Altogether, our study provides mechanistic connections between Pol-α and the MCM complex and demonstrates their relevance in NK cell function.

Authors

Petro Starokadomskyy, Katelynn M. Wilton, Konrad Krzewski, Adam Lopez, Luis Sifuentes-Dominguez, Brittany Overlee, Qing Chen, Ann Ray, Aleksandra Gil-Krzewska, Mary Peterson, Lisa N. Kinch, Luis Rohena, Eyal Grunebaum, Andrew R. Zinn, Nick V. Grishin, Daniel D. Billadeau, Ezra Burstein

×

Salt increases monocyte CCR2 expression and inflammatory responses in humans
Eliane F.E. Wenstedt, Sanne G.S. Verberk, Jeffrey Kroon, Annette E. Neele, Jeroen Baardman, Nike Claessen, Özge T. Pasaoglu, Emma Rademaker, Esmee M. Schrooten, Rosa D. Wouda, Menno P.J. de Winther, Jan Aten, Liffert Vogt, Jan Van den Bossche
Eliane F.E. Wenstedt, Sanne G.S. Verberk, Jeffrey Kroon, Annette E. Neele, Jeroen Baardman, Nike Claessen, Özge T. Pasaoglu, Emma Rademaker, Esmee M. Schrooten, Rosa D. Wouda, Menno P.J. de Winther, Jan Aten, Liffert Vogt, Jan Van den Bossche
View: Text | PDF

Salt increases monocyte CCR2 expression and inflammatory responses in humans

  • Text
  • PDF
Abstract

Inflammation may play a role in the link between high salt intake and its deleterious consequences. However, it is unknown whether salt can induce proinflammatory priming of monocytes and macrophages in humans. We investigated the effects of salt on monocytes and macrophages in vitro and in vivo by performing a randomized crossover trial in which 11 healthy human subjects adhered to a 2-week low-salt and high-salt diet. We demonstrate that salt increases monocyte expression of CCR2, a chemokine receptor that mediates monocyte infiltration in inflammatory diseases. In line with this, we show a salt-induced increase of plasma MCP-1, transendothelial migration of monocytes, and skin macrophage density after high-salt diet. Macrophages demonstrate signs of an increased proinflammatory phenotype after salt exposure, as represented by boosted LPS-induced cytokine secretion of IL-6, TNF, and IL-10 in vitro, and by increased HLA-DR expression and decreased CD206 expression on skin macrophages after high-salt diet. Taken together, our data open up the possibility for inflammatory monocyte and macrophage responses as potential contributors to the deleterious effects of high salt intake.

Authors

Eliane F.E. Wenstedt, Sanne G.S. Verberk, Jeffrey Kroon, Annette E. Neele, Jeroen Baardman, Nike Claessen, Özge T. Pasaoglu, Emma Rademaker, Esmee M. Schrooten, Rosa D. Wouda, Menno P.J. de Winther, Jan Aten, Liffert Vogt, Jan Van den Bossche

×

VEGF188 promotes corneal reinnervation after injury
James T. Brash, Laura Denti, Christiana Ruhrberg, Franziska Bucher
James T. Brash, Laura Denti, Christiana Ruhrberg, Franziska Bucher
View: Text | PDF

VEGF188 promotes corneal reinnervation after injury

  • Text
  • PDF
Abstract

Vascular endothelial growth factor A (VEGF) induces angiogenesis and vascular hyperpermeability in ocular tissues and is therefore a key therapeutic target for eye conditions in which these processes are dysregulated. In contrast, the therapeutic potential of VEGF’s neurotrophic roles in the eye has remained unexploited. In particular, it is not known whether modulating levels of any of the 3 major alternatively spliced VEGF isoforms might provide a therapeutic approach to promote neural health in the eye without inducing vascular pathology. Here, we have used a variety of mouse models to demonstrate differences in overall VEGF levels and VEGF isoform ratios across tissues in the healthy eye. We further show that VEGF isoform expression was differentially regulated in retinal versus corneal disease models. Among the 3 major isoforms — termed VEGF120, VEGF164, and VEGF188 — VEGF188 was upregulated to the greatest extent in injured cornea, where it was both necessary and sufficient for corneal nerve regeneration. Moreover, topical VEGF188 application further promoted corneal nerve regeneration without inducing pathological neovascularization. VEGF isoform modulation should therefore be explored further for its potential in promoting neural health in the eye.

Authors

James T. Brash, Laura Denti, Christiana Ruhrberg, Franziska Bucher

×

Soluble Thy-1 reverses lung fibrosis via its integrin-binding motif
Chunting Tan, Min Jiang, Simon S. Wong, Celia R. Espinoza, Ceonne Kim, Xiaoping Li, Edward Connors, James S. Hagood
Chunting Tan, Min Jiang, Simon S. Wong, Celia R. Espinoza, Ceonne Kim, Xiaoping Li, Edward Connors, James S. Hagood
View: Text | PDF

Soluble Thy-1 reverses lung fibrosis via its integrin-binding motif

  • Text
  • PDF
Abstract

Loss of Thy-1 expression in fibroblasts correlates with lung fibrogenesis; however, the clinical relevance of therapeutic targeting of myofibroblasts via Thy-1–associated pathways remains to be explored. Using single (self-resolving) or repetitive (nonresolving) intratracheal administration of bleomycin in type 1 collagen-GFP reporter mice, we report that Thy-1 surface expression, but not mRNA, is reversibly diminished in activated fibroblasts and myofibroblasts in self-resolving fibrosis. However, Thy-1 mRNA expression is silenced in lung with nonresolving fibrosis following repetitive bleomycin administration, associated with persistent activation of αv integrin. Thy1-null mice showed progressive αv integrin activation and myofibroblast accumulation after a single dose of bleomycin. In vitro, targeting of αv integrin by soluble Thy-1-Fc (sThy-1), but not RLE-mutated Thy-1 or IgG, reversed TGF-β1–induced myofibroblast differentiation in a dose-dependent manner, suggesting that Thy-1’s integrin-binding RGD motif is required for the reversibility of myofibroblast differentiation. In vivo, treatment of established fibrosis induced either by single-dose bleomycin in WT mice or by induction of active TGF-β1 by doxycycline in Cc10-rtTA-tTS-Tgfb1 mice with sThy-1 (1000 ng/kg, i.v.) promoted resolution of fibrosis. Collectively, these findings demonstrate that sThy-1 therapeutically inhibits the αv integrin–driven feedback loop that amplifies and sustains fibrosis.

Authors

Chunting Tan, Min Jiang, Simon S. Wong, Celia R. Espinoza, Ceonne Kim, Xiaoping Li, Edward Connors, James S. Hagood

×

TFEB activation in macrophages attenuates postmyocardial infarction ventricular dysfunction independently of ATG5-mediated autophagy
Ali Javaheri, Geetika Bajpai, Antonino Picataggi, Smrithi Mani, Layla Foroughi, Hosannah Evie, Attila Kovacs, Carla J. Weinheimer, Krzystztof Hyrc, Qingli Xiao, Andrea Ballabio, Jin-Moo Lee, Scot J. Matkovich, Babak Razani, Joel D. Schilling, Kory J. Lavine, Abhinav Diwan
Ali Javaheri, Geetika Bajpai, Antonino Picataggi, Smrithi Mani, Layla Foroughi, Hosannah Evie, Attila Kovacs, Carla J. Weinheimer, Krzystztof Hyrc, Qingli Xiao, Andrea Ballabio, Jin-Moo Lee, Scot J. Matkovich, Babak Razani, Joel D. Schilling, Kory J. Lavine, Abhinav Diwan
View: Text | PDF

TFEB activation in macrophages attenuates postmyocardial infarction ventricular dysfunction independently of ATG5-mediated autophagy

  • Text
  • PDF
Abstract

Lysosomes are at the epicenter of cellular processes critical for inflammasome activation in macrophages. Inflammasome activation and IL-1β secretion are implicated in myocardial infarction (MI) and resultant heart failure; however, little is known about how macrophage lysosomes regulate these processes. In mice subjected to cardiac ischemia/reperfusion (IR) injury and humans with ischemic cardiomyopathy, we observed evidence of lysosomal impairment in macrophages. Inducible macrophage-specific overexpression of transcription factor EB (TFEB), a master regulator of lysosome biogenesis (Mϕ-TFEB), attenuated postinfarction remodeling, decreased abundance of proinflammatory macrophages, and reduced levels of myocardial IL-1β compared with controls. Surprisingly, neither inflammasome suppression nor Mϕ-TFEB–mediated attenuation of postinfarction myocardial dysfunction required intact ATG5-dependent macroautophagy (hereafter termed “autophagy”). RNA-seq of flow-sorted macrophages postinfarction revealed that Mϕ-TFEB upregulated key targets involved in lysosomal lipid metabolism. Specifically, inhibition of the TFEB target, lysosomal acid lipase, in vivo abrogated the beneficial effect of Mϕ-TFEB on postinfarction ventricular function. Thus, TFEB reprograms macrophage lysosomal lipid metabolism to attenuate remodeling after IR, suggesting an alternative paradigm whereby lysosome function affects inflammation.

Authors

Ali Javaheri, Geetika Bajpai, Antonino Picataggi, Smrithi Mani, Layla Foroughi, Hosannah Evie, Attila Kovacs, Carla J. Weinheimer, Krzystztof Hyrc, Qingli Xiao, Andrea Ballabio, Jin-Moo Lee, Scot J. Matkovich, Babak Razani, Joel D. Schilling, Kory J. Lavine, Abhinav Diwan

×
  • ← Previous
  • 1
  • 2
  • …
  • 281
  • 282
  • 283
  • …
  • 412
  • 413
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts