Pulmonary fibrosis is potentiated by a positive feedback loop involving the extracellular sialidase enzyme neuraminidase 3 (NEU3) causing release of active TGF-β1 and TGF-β1 upregulating NEU3 by increasing translation without affecting mRNA levels. In this report, we elucidate the TGF-β1 upregulation of the translation mechanism. In human lung fibroblasts, TGF-β1 increased levels of proteins, including NEU3, by increasing translation of the encoding mRNAs without significantly affecting levels of these mRNAs. A total of 180 of these mRNAs shared a common 20-nucleotide motif. Deletion of this motif from NEU3 mRNA eliminated the TGF-β1 upregulation of NEU3 translation, while insertion of this motif in 2 mRNAs insensitive to TGF-β1 caused TGF-β1 to upregulate their translation. RNA-binding proteins including DEAD box helicase 3, X-linked (DDX3), bind the RNA motif, and TGF-β1 regulates their protein levels and/or binding to the motif. We found that DDX3 was upregulated in the fibrotic lesions in patients with pulmonary fibrosis, and inhibiting DDX3 in fibroblasts reduced TGF-β1 upregulation of NEU3 levels. In the mouse bleomycin model of pulmonary fibrosis, injections of the DDX3 inhibitor RK-33 potentiated survival and reduced lung inflammation, fibrosis, and tissue levels of DDX3, TGF-β1, and NEU3. These results suggest that inhibiting an mRNA-binding protein that mediates TGF-β1 upregulation of translation can reduce pulmonary fibrosis.
Wensheng Chen, Darrell Pilling, Richard H. Gomer
Targeting tumor-associated blood vessels to increase immune infiltration may enhance treatment effectiveness, yet limited data exist regarding anti-angiogenesis effects on the tumor microenvironment (TME). We hypothesized that dual targeting of angiogenesis with immune checkpoints would improve both intracranial and extracranial disease. We used subcutaneous and left ventricle melanoma models to evaluate anti–PD-1/anti-VEGF and anti–PD-1/lenvatinib (pan-VEGFR inhibitor) combinations. Cytokine/chemokine profiling and flow cytometry were performed to assess signaling and immune-infiltrating populations. An in vitro blood-brain barrier (BBB) model was utilized to study intracranial treatment effects on endothelial integrity and leukocyte transmigration. Anti–PD-1 with either anti-VEGF or lenvatinib improved survival and decreased tumor growth in systemic melanoma murine models; treatment increased Th1 cytokine/chemokine signaling. Lenvatinib decreased tumor-associated macrophages but increased plasmacytoid DCs early in treatment; this effect was not evident with anti-VEGF. Both lenvatinib and anti-VEGF resulted in decreased intratumoral blood vessels. Although anti-VEGF promoted endothelial stabilization in an in vitro BBB model, while lenvatinib did not, both regimens enabled leukocyte transmigration. The combined targeting of PD-1 and VEGF or its receptors promotes enhanced melanoma antitumor activity, yet their effects on the TME are quite different. These studies provide insights into dual anti–PD-1 and anti-angiogenesis combinations.
Thuy T. Tran, Jasmine Caulfield, Lin Zhang, David Schoenfeld, Dijana Djureinovic, Veronica L. Chiang, Victor Oria, Sarah A. Weiss, Kelly Olino, Lucia B. Jilaveanu, Harriet M. Kluger
We examine whether calcineurin or protein phosphatase 2B (PP2B) regulates the basolateral inwardly rectifying potassium channel Kir4.1/Kir5.1 in the distal convoluted tubule (DCT). Application of tacrolimus (FK506) or cyclosporine A (CsA) increased whole-cell Kir4.1/Kir5.1-mediated K+ currents and hyperpolarized the DCT membrane. Moreover, FK506-induced stimulation of Kir4.1/Kir5.1 was absent in kidney tubule–specific 12 kDa FK506-binding protein–knockout mice (Ks-FKBP-12–KO). In contrast, CsA stimulated Kir4.1/Kir5.1 of the DCT in Ks-FKBP-12–KO mice, suggesting that FK506-induced stimulation of Kir4.1/Kir5.1 was due to inhibiting PP2B. Single-channel patch-clamp experiments demonstrated that FK506 or CsA stimulated the basolateral Kir4.1/Kir5.1 activity of the DCT, defined by NPo (a product of channel number and open probability). However, this effect was absent in the DCT treated with Src family protein tyrosine kinase (SFK) inhibitor or hydroxyl peroxide. Fluorescence imaging demonstrated that CsA treatment increased membrane staining intensity of Kir4.1 in the DCT of Kcnj10fl/fl mice. Moreover, CsA treatment had no obvious effect on phosphorylated NaCl cotransporter (pNCC) expression in Ks-Kir4.1–KO mice. Immunoblotting showed acute FK506 treatment increased pNCC expression in Kcnj10fl/fl mice, but this effect was attenuated in Ks-Kir4.1–KO mice. In vivo measurement of thiazide-induced renal Na+ excretion demonstrated that FK506 enhanced thiazide-induced natriuresis. This effect was absent in Ks-FKBP-12–KO mice and blunted in Ks-Kir4.1–KO mice. We conclude that inhibition of PP2B stimulates Kir4.1/Kir5.1 of the DCT and NCC and that PP2B inhibition–induced stimulation of NCC is partially achieved by stimulation of the basolateral Kir4.1/Kir5.1.
Dan-Dan Zhang, Xin-Peng Duan, Kerim Mutig, Franziska Rausch, Yu Xiao, Jun-Ya Zheng, Dao-Hong Lin, Wen-Hui Wang
The inability of mature retinal ganglion cells (RGCs) to regenerate axons after optic nerve injury can be partially reversed by manipulating cell-autonomous and/or -nonautonomous factors. Although manipulations of cell-nonautonomous factors could have higher translational potential than genetic manipulations of RGCs, they have generally produced lower levels of optic nerve regeneration. Here, we report that preconditioning resulting from mild lens injury (conditioning LI, cLI) before optic nerve damage induced far greater regeneration than LI after nerve injury or the pro-inflammatory agent zymosan given either before or after nerve damage. Unlike zymosan-induced regeneration, cLI was unaltered by depleting mature neutrophils or T cells or blocking receptors for known inflammation-derived growth factors (oncomodulin, stromal cell–derived factor 1, CCL5) and was only partly diminished by suppressing CCR2+ monocyte recruitment. Repeated episodes of LI led to full-length optic nerve regeneration, and pharmacological removal of local resident macrophages with the colony stimulating factor 1 receptor inhibitor PLX5622 enabled some axons to reinnervate the brain in just 6 weeks, comparable to the results obtained with the most effective genetic manipulations of RGCs. Thus, cell-nonautonomous interventions can induce high levels of optic nerve regeneration, paving the way to uncovering potent, translatable therapeutic targets for CNS repair.
Qian Feng, Kimberly A. Wong, Larry I. Benowitz
HIV-1 usually utilizes CCR5 as its coreceptor and rarely switches to a CXCR4-tropic virus until the late stage of infection. CCR5+CD4+ T cells are the major virus-producing cells in viremic individuals as well as SIV-infected nonhuman primates. The differentiation of CCR5+CD4+ T cells is associated with the availability of IL-15, which increases during acute HIV-1 infection. Here, we report that CCR5 was expressed by CD4+ T cells exhibiting effector or effector memory phenotypes with high expression levels of the IL-2/IL-15 receptor common β and γ chains. IL-15, but not IL-7, improved the survival of CCR5+CD4+ T cells, drove their expansion, and facilitated HIV-1 infection in vitro and in humanized mice. Our study suggests that IL-15 plays confounding roles in HIV-1 infection, and future studies on the IL-15–based boosting of anti–HIV-1 immunity should carefully examine the potential effects on the expansion of HIV-1 reservoirs in CCR5+CD4+ T cells.
Yuhao Li, Hongbo Gao, Kolin M. Clark, Liang Shan
Patients with neovascular AMD (nAMD) suffer vision loss from destructive angiogenesis, termed choroidal neovascularization (CNV). Macrophages are found in CNV lesions from patients with nAMD. Additionally, Ccr2–/– mice, which lack classical monocyte–derived macrophages, show reduced CNV size. However, macrophages are highly diverse cells that can perform multiple functions. We performed single-cell RNA-Seq on immune cells from WT and Ccr2–/– eyes to uncover macrophage heterogeneity during the laser-induced CNV mouse model of nAMD. We identified 12 macrophage clusters, including Spp1+ macrophages. Spp1+ macrophages were enriched from WT lasered eyes and expressed a proangiogenic transcriptome via multiple pathways, including vascular endothelial growth factor signaling, endothelial cell sprouting, cytokine signaling, and fibrosis. Additionally, Spp1+ macrophages expressed the marker CD11c, and CD11c+ macrophages were increased by laser and present in CNV lesions. Finally, CD11c+ macrophage depletion reduced CNV size by 40%. These findings broaden our understanding of ocular macrophage heterogeneity and implicate CD11c+ macrophages as potential therapeutic targets for treatment-resistant patients with nAMD.
Steven Droho, Amrita Rajesh, Carla M. Cuda, Harris Perlman, Jeremy A. Lavine
Diabetes is associated with increased risk for kidney disease, heart failure, and mortality. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) prevent these adverse outcomes; however, the mechanisms involved are not clear. We generated a roadmap of the metabolic alterations that occur in different organs in diabetes and in response to SGLT2i. In vivo metabolic labeling with 13C-glucose in normoglycemic and diabetic mice treated with or without dapagliflozin, followed by metabolomics and metabolic flux analyses, showed that, in diabetes, glycolysis and glucose oxidation are impaired in the kidney, liver, and heart. Treatment with dapagliflozin failed to rescue glycolysis. SGLT2 inhibition increased glucose oxidation in all organs; in the kidney, this was associated with modulation of the redox state. Diabetes was associated with altered methionine cycle metabolism, evident by decreased betaine and methionine levels, whereas treatment with SGLT2i increased hepatic betaine along with decreased homocysteine levels. mTORC1 activity was inhibited by SGLT2i along with stimulation of AMPK in both normoglycemic and diabetic animals, possibly explaining the protective effects against kidney, liver, and heart diseases. Collectively, our findings suggest that SGLT2i induces metabolic reprogramming orchestrated by AMPK-mTORC1 signaling with common and distinct effects in various tissues, with implications for diabetes and aging.
Aviram Kogot-Levin, Yael Riahi, Ifat Abramovich, Ofri Mosenzon, Bella Agranovich, Liat Kadosh, Rachel Ben-Haroush Schyr, Doron Kleiman, Liad Hinden, Erol Cerasi, Danny Ben-Zvi, Ernesto Bernal-Mizrachi, Joseph Tam, Eyal Gottlieb, Gil Leibowitz
Prostate-specific membrane antigen (PSMA) is an important cell surface target in prostate cancer. There are limited data on the heterogeneity of PSMA tissue expression in metastatic castration-resistant prostate cancer (mCRPC). Furthermore, the mechanisms regulating PSMA expression (encoded by the FOLH1 gene) are not well understood. Here, we demonstrate that PSMA expression is heterogeneous across different metastatic sites and molecular subtypes of mCRPC. In a rapid autopsy cohort in which multiple metastatic sites per patient were sampled, we found that 13 of 52 (25%) cases had no detectable PSMA and 23 of 52 (44%) cases showed heterogeneous PSMA expression across individual metastases, with 33 (63%) cases harboring at least 1 PSMA-negative site. PSMA-negative tumors displayed distinct transcriptional profiles with expression of druggable targets such as MUC1. Loss of PSMA was associated with epigenetic changes of the FOLH1 locus, including gain of CpG methylation and loss of histone 3 lysine 27 (H3K27) acetylation. Treatment with histone deacetylase (HDAC) inhibitors reversed this epigenetic repression and restored PSMA expression in vitro and in vivo. Collectively, these data provide insights into the expression patterns and regulation of PSMA in mCRPC and suggest that epigenetic therapies — in particular, HDAC inhibitors — can be used to augment PSMA levels.
Erolcan Sayar, Radhika A. Patel, Ilsa M. Coleman, Martine P. Roudier, Ailin Zhang, Pallabi Mustafi, Jin-Yih Low, Brian Hanratty, Lisa S. Ang, Vipul Bhatia, Mohamed Adil, Hasim Bakbak, David A. Quigley, Michael T. Schweizer, Jessica E. Hawley, Lori Kollath, Lawrence D. True, Felix Y. Feng, Neil H. Bander, Eva Corey, John K. Lee, Colm Morrissey, Roman Gulati, Peter S. Nelson, Michael C. Haffner
Acute kidney injury (AKI) secondary to sepsis results in poor outcomes and conventional kidney function indicators lack diagnostic value. Soluble urokinase plasminogen activator receptor (suPAR) is an innate immune–derived molecule implicated in inflammatory organ damage. We characterized the diagnostic ability of longitudinal serum suPAR levels to discriminate severity and course of sepsis-induced AKI (SI-AKI) in 200 critically ill patients meeting Sepsis-3 criteria. The pathophysiologic relevance of varying suPAR levels in SI-AKI was explored in a polymicrobial sepsis model in WT, (s)uPAR-knockout, and transgenic suPAR-overexpressing mice. At all time points studied, suPAR provided a robust classification of SI-AKI disease severity, with improved prediction of renal replacement therapy (RRT) and mortality compared with established kidney biomarkers. Patients with suPAR levels of greater than 12.7 ng/mL were at highest risk for RRT or death, with an adjusted odds ratio of 7.48 (95% CI, 3.00–18.63). suPAR deficiency protected mice against SI-AKI. suPAR-overexpressing mice exhibited greater kidney damage and poorer survival through inflamed kidneys, accompanied by local upregulation of potent chemoattractants and pronounced kidney T cell infiltration. Hence, suPAR allows for an innate immune–derived and kidney function–independent staging of SI-AKI and offers improved longitudinal risk stratification. suPAR promotes T cell–based kidney inflammation, while suPAR deficiency improves SI-AKI.
Christian Nusshag, Changli Wei, Eunsil Hahm, Salim S. Hayek, Jing Li, Beata Samelko, Christoph Rupp, Roman Szudarek, Claudius Speer, Florian Kälble, Matthias Schaier, Florian Uhle, Felix C.F. Schmitt, Mascha O. Fiedler, Ellen Krautkrämer, Yanxia Cao, Ricardo Rodriguez, Uta Merle, Jesper Eugen-Olsen, Martin Zeier, Markus A. Weigand, Christian Morath, Thorsten Brenner, Jochen Reiser
Currently authorized COVID-19 vaccines induce humoral and cellular responses to epitopes in the SARS-CoV-2 spike protein, though the relative roles of antibodies and T cells in protection are not well understood. To understand the role of vaccine-elicited T cell responses in protection, we established a T cell–only vaccine using a DC-targeted lentiviral vector expressing single CD8+ T cell epitopes of the viral nucleocapsid, spike, and ORF1. Immunization of angiotensin-converting enzyme 2–transgenic mice with ex vivo lentiviral vector–transduced DCs or by direct injection of the vector induced the proliferation of functional antigen-specific CD8+ T cells, resulting in a 3-log decrease in virus load upon live virus challenge that was effective against the ancestral virus and Omicron variants. The Pfizer/BNT162b2 vaccine was also protective in mice, but the antibodies elicited did not cross-react on the Omicron variants, suggesting that the protection was mediated by T cells. The studies suggest that the T cell response plays an important role in vaccine protection. The findings suggest that the incorporation of additional T cell epitopes into current vaccines would increase their effectiveness and broaden protection.
Takuya Tada, Ju-Yi Peng, Belinda M. Dcosta, Nathaniel R. Landau
No posts were found with this tag.