Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Dermatology

  • 113 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 10
  • 11
  • 12
  • Next →
Stat3 regulates desmoglein 3 transcription in epithelial keratinocytes
Xuming Mao, Michael Jeffrey T. Cho, Christoph T. Ellebrecht, Eric M. Mukherjee, Aimee S. Payne
Xuming Mao, Michael Jeffrey T. Cho, Christoph T. Ellebrecht, Eric M. Mukherjee, Aimee S. Payne
View: Text | PDF

Stat3 regulates desmoglein 3 transcription in epithelial keratinocytes

  • Text
  • PDF
Abstract

Pemphigus vulgaris (PV) is an epithelial blistering disease caused by autoantibodies to the desmosomal cadherin desmoglein 3 (DSG3). Glucocorticoids improve disease within days by increasing DSG3 gene transcription, although the mechanism for this observation remains unknown. Here, we show that DSG3 transcription in keratinocytes is regulated by Stat3. Treatment of primary human keratinocytes (PHKs) with hydrocortisone or rapamycin, but not the p38 MAPK inhibitor SB202190, significantly increases DSG3 mRNA and protein expression and correspondingly reduces phospho-S727 Stat3. Stat3 inhibition or shRNA-knockdown also significantly increases DSG3 mRNA and protein levels. Hydrocortisone- or rapamycin-treated PHKs demonstrate increased number and length of desmosomes by electron microscopy and are resistant to PV IgG–induced loss of cell adhesion, whereas constitutive activation of Stat3 in PHKs abrogates DSG3 upregulation and inhibits hydrocortisone and rapamycin’s therapeutic effects. Topical hydrocortisone, rapamycin, or Stat3 inhibitor XVIII prevents autoantibody-induced blistering in the PV passive transfer mouse model, correlating with increased epidermal DSG3 expression and decreased phospho-S727 Stat3. Our data indicate that glucocorticoids and rapamycin upregulate DSG3 transcription through inhibition of Stat3. These studies explain how glucocorticoids rapidly improve pemphigus and may also offer novel insights into the physiologic and pathophysiologic regulation of desmosomal cadherin expression in normal epidermis and epithelial carcinomas.

Authors

Xuming Mao, Michael Jeffrey T. Cho, Christoph T. Ellebrecht, Eric M. Mukherjee, Aimee S. Payne

×

Transcriptional dissection of melanoma identifies a high-risk subtype underlying TP53 family genes and epigenome deregulation
Brateil Badal, Alexander Solovyov, Serena Di Cecilia, Joseph Minhow Chan, Li-Wei Chang, Ramiz Iqbal, Iraz T. Aydin, Geena S. Rajan, Chen Chen, Franco Abbate, Kshitij S. Arora, Antoine Tanne, Stephen B. Gruber, Timothy M. Johnson, Douglas R. Fullen, Leon Raskin, Robert Phelps, Nina Bhardwaj, Emily Bernstein, David T. Ting, Georg Brunner, Eric E. Schadt, Benjamin D. Greenbaum, Julide Tok Celebi
Brateil Badal, Alexander Solovyov, Serena Di Cecilia, Joseph Minhow Chan, Li-Wei Chang, Ramiz Iqbal, Iraz T. Aydin, Geena S. Rajan, Chen Chen, Franco Abbate, Kshitij S. Arora, Antoine Tanne, Stephen B. Gruber, Timothy M. Johnson, Douglas R. Fullen, Leon Raskin, Robert Phelps, Nina Bhardwaj, Emily Bernstein, David T. Ting, Georg Brunner, Eric E. Schadt, Benjamin D. Greenbaum, Julide Tok Celebi
View: Text | PDF

Transcriptional dissection of melanoma identifies a high-risk subtype underlying TP53 family genes and epigenome deregulation

  • Text
  • PDF
Abstract

BACKGROUND. Melanoma is a heterogeneous malignancy. We set out to identify the molecular underpinnings of high-risk melanomas, those that are likely to progress rapidly, metastasize, and result in poor outcomes.

METHODS. We examined transcriptome changes from benign states to early-, intermediate-, and late-stage tumors using a set of 78 treatment-naive melanocytic tumors consisting of primary melanomas of the skin and benign melanocytic lesions. We utilized a next-generation sequencing platform that enabled a comprehensive analysis of protein-coding and -noncoding RNA transcripts.

RESULTS. Gene expression changes unequivocally discriminated between benign and malignant states, and a dual epigenetic and immune signature emerged defining this transition. To our knowledge, we discovered previously unrecognized melanoma subtypes. A high-risk primary melanoma subset was distinguished by a 122-epigenetic gene signature (“epigenetic” cluster) and TP53 family gene deregulation (TP53, TP63, and TP73). This subtype associated with poor overall survival and showed enrichment of cell cycle genes. Noncoding repetitive element transcripts (LINEs, SINEs, and ERVs) that can result in immunostimulatory signals recapitulating a state of “viral mimicry” were significantly repressed. The high-risk subtype and its poor predictive characteristics were validated in several independent cohorts. Additionally, primary melanomas distinguished by specific immune signatures (“immune” clusters) were identified.

CONCLUSION. The TP53 family of genes and genes regulating the epigenetic machinery demonstrate strong prognostic and biological relevance during progression of early disease. Gene expression profiling of protein-coding and -noncoding RNA transcripts may be a better predictor for disease course in melanoma. This study outlines the transcriptional interplay of the cancer cell’s epigenome with the immune milieu with potential for future therapeutic targeting.

FUNDING. National Institutes of Health (CA154683, CA158557, CA177940, CA087497-13), Tisch Cancer Institute, Melanoma Research Foundation, the Dow Family Charitable Foundation, and the Icahn School of Medicine at Mount Sinai.

Authors

Brateil Badal, Alexander Solovyov, Serena Di Cecilia, Joseph Minhow Chan, Li-Wei Chang, Ramiz Iqbal, Iraz T. Aydin, Geena S. Rajan, Chen Chen, Franco Abbate, Kshitij S. Arora, Antoine Tanne, Stephen B. Gruber, Timothy M. Johnson, Douglas R. Fullen, Leon Raskin, Robert Phelps, Nina Bhardwaj, Emily Bernstein, David T. Ting, Georg Brunner, Eric E. Schadt, Benjamin D. Greenbaum, Julide Tok Celebi

×

Setting the target for pemphigus vulgaris therapy
Christoph T. Ellebrecht, Aimee S. Payne
Christoph T. Ellebrecht, Aimee S. Payne
View: Text | PDF

Setting the target for pemphigus vulgaris therapy

  • Text
  • PDF
Abstract

Despite the rising incidence of autoimmunity, therapeutic options for patients with autoimmune disease still rely on decades-old immunosuppressive strategies that risk severe and potentially fatal complications. Thus, novel therapeutic approaches for autoimmune diseases are greatly needed in order to minimize treatment-related toxicity. Such strategies would ideally target only the autoreactive immune components to preserve beneficial immunity. Here, we review how several decades of basic, translational, and clinical research on the immunology of pemphigus vulgaris (PV), an autoantibody-mediated skin disease, have enabled the development of targeted immunotherapeutic strategies. We discuss research to elucidate the pathophysiology of PV and how the knowledge afforded by these studies has led to the preclinical and clinical testing of targeted approaches to neutralize autoantibodies, to induce antigen-specific tolerance, and to specifically eliminate autoreactive B cells in PV.

Authors

Christoph T. Ellebrecht, Aimee S. Payne

×

Integrated, multicohort analysis of systemic sclerosis identifies robust transcriptional signature of disease severity
Shane Lofgren, Monique Hinchcliff, Mary Carns, Tammara Wood, Kathleen Aren, Esperanza Arroyo, Peggie Cheung, Alex Kuo, Antonia Valenzuela, Anna Haemel, Paul J. Wolters, Jessica Gordon, Robert Spiera, Shervin Assassi, Francesco Boin, Lorinda Chung, David Fiorentino, Paul J. Utz, Michael L. Whitfield, Purvesh Khatri
Shane Lofgren, Monique Hinchcliff, Mary Carns, Tammara Wood, Kathleen Aren, Esperanza Arroyo, Peggie Cheung, Alex Kuo, Antonia Valenzuela, Anna Haemel, Paul J. Wolters, Jessica Gordon, Robert Spiera, Shervin Assassi, Francesco Boin, Lorinda Chung, David Fiorentino, Paul J. Utz, Michael L. Whitfield, Purvesh Khatri
View: Text | PDF

Integrated, multicohort analysis of systemic sclerosis identifies robust transcriptional signature of disease severity

  • Text
  • PDF
Abstract

Systemic sclerosis (SSc) is a rare autoimmune disease with the highest case-fatality rate of all connective tissue diseases. Current efforts to determine patient response to a given treatment using the modified Rodnan skin score (mRSS) are complicated by interclinician variability, confounding, and the time required between sequential mRSS measurements to observe meaningful change. There is an unmet critical need for an objective metric of SSc disease severity. Here, we performed an integrated, multicohort analysis of SSc transcriptome data across 7 datasets from 6 centers composed of 515 samples. Using 158 skin samples from SSc patients and healthy controls recruited at 2 centers as a discovery cohort, we identified a 415-gene expression signature specific for SSc, and validated its ability to distinguish SSc patients from healthy controls in an additional 357 skin samples from 5 independent cohorts. Next, we defined the SSc skin severity score (4S). In every SSc cohort of skin biopsy samples analyzed in our study, 4S correlated significantly with mRSS, allowing objective quantification of SSc disease severity. Using transcriptome data from the largest longitudinal trial of SSc patients to date, we showed that 4S allowed us to objectively monitor individual SSc patients over time, as (a) the change in 4S of a patient is significantly correlated with change in the mRSS, and (b) the change in 4S at 12 months of treatment could predict the change in mRSS at 24 months. Our results suggest that 4S could be used to distinguish treatment responders from nonresponders prior to mRSS change. Our results demonstrate the potential clinical utility of a novel robust molecular signature and a computational approach to SSc disease severity quantification.

Authors

Shane Lofgren, Monique Hinchcliff, Mary Carns, Tammara Wood, Kathleen Aren, Esperanza Arroyo, Peggie Cheung, Alex Kuo, Antonia Valenzuela, Anna Haemel, Paul J. Wolters, Jessica Gordon, Robert Spiera, Shervin Assassi, Francesco Boin, Lorinda Chung, David Fiorentino, Paul J. Utz, Michael L. Whitfield, Purvesh Khatri

×

Interleukin 6 regulates psoriasiform inflammation–associated thrombosis
Yunmei Wang, Jackelyn B. Golden, Yi Fritz, Xiufen Zhang, Doina Diaconu, Maya I. Camhi, Huiyun Gao, Sean M. Dawes, Xianying Xing, Santhi K. Ganesh, Johann E. Gudjonsson, Daniel I. Simon, Thomas S. McCormick, Nicole L. Ward
Yunmei Wang, Jackelyn B. Golden, Yi Fritz, Xiufen Zhang, Doina Diaconu, Maya I. Camhi, Huiyun Gao, Sean M. Dawes, Xianying Xing, Santhi K. Ganesh, Johann E. Gudjonsson, Daniel I. Simon, Thomas S. McCormick, Nicole L. Ward
View: Text | PDF

Interleukin 6 regulates psoriasiform inflammation–associated thrombosis

  • Text
  • PDF
Abstract

Psoriasis patients are at increased risk of heart attack and stroke and have elevated MRP8/14 levels that predict heart attack. The KC-Tie2 psoriasiform mouse model exhibits elevated MRP8/14 and is prothrombotic. Mrp14–/– mice, in contrast, are protected from thrombosis, but, surprisingly, KC-Tie2xMrp14–/– mice remain prothrombotic. Treating KC-Tie2xMrp14–/– mice with anti–IL-23p19 antibodies reversed the skin inflammation, improved thrombosis, and decreased IL-6. In comparison, IL-6 deletion from KC-Tie2 animals improved thrombosis despite sustained skin inflammation, suggesting that thrombosis improvements following IL-23 inhibition occur secondary to IL-6 decreases. Psoriasis patient skin has elevated IL-6 and IL-6 receptor is present in human coronary atheroma, supporting a link between skin and distant vessel disease in patient tissue. Together, these results identify a critical role for skin-derived IL-6 linking skin inflammation with thrombosis, and shows that in the absence of IL-6 the connection between skin inflammation and thrombosis comorbidities is severed.

Authors

Yunmei Wang, Jackelyn B. Golden, Yi Fritz, Xiufen Zhang, Doina Diaconu, Maya I. Camhi, Huiyun Gao, Sean M. Dawes, Xianying Xing, Santhi K. Ganesh, Johann E. Gudjonsson, Daniel I. Simon, Thomas S. McCormick, Nicole L. Ward

×

Regulatory T cell transfer ameliorates lymphedema and promotes lymphatic vessel function
Epameinondas Gousopoulos, Steven T. Proulx, Samia B. Bachmann, Jeannette Scholl, Dimitris Dionyssiou, Efterpi Demiri, Cornelia Halin, Lothar C. Dieterich, Michael Detmar
Epameinondas Gousopoulos, Steven T. Proulx, Samia B. Bachmann, Jeannette Scholl, Dimitris Dionyssiou, Efterpi Demiri, Cornelia Halin, Lothar C. Dieterich, Michael Detmar
View: Text | PDF

Regulatory T cell transfer ameliorates lymphedema and promotes lymphatic vessel function

  • Text
  • PDF
Abstract

Secondary lymphedema is a common postcancer treatment complication, but the underlying pathological processes are poorly understood and no curative treatment exists. To investigate lymphedema pathomechanisms, a top-down approach was applied, using genomic data and validating the role of a single target. RNA sequencing of lymphedematous mouse skin indicated upregulation of many T cell–related networks, and indeed depletion of CD4+ cells attenuated lymphedema. The significant upregulation of Foxp3, a transcription factor specifically expressed by regulatory T cells (Tregs), along with other Treg-related genes, implied a potential role of Tregs in lymphedema. Indeed, increased infiltration of Tregs was identified in mouse lymphedematous skin and in human lymphedema specimens. To investigate the role of Tregs during disease progression, loss-of-function and gain-of-function studies were performed. Depletion of Tregs in transgenic mice with Tregs expressing the primate diphtheria toxin receptor and green fluorescent protein (Foxp3-DTR-GFP) mice led to exacerbated edema, concomitant with increased infiltration of immune cells and a mixed TH1/TH2 cytokine profile. Conversely, expansion of Tregs using IL-2/anti–IL-2 mAb complexes significantly reduced lymphedema development. Therapeutic application of adoptively transferred Tregs upon lymphedema establishment reversed all of the major hallmarks of lymphedema, including edema, inflammation, and fibrosis, and also promoted lymphatic drainage function. Collectively, our results reveal that Treg application constitutes a potential new curative treatment modality for lymphedema.

Authors

Epameinondas Gousopoulos, Steven T. Proulx, Samia B. Bachmann, Jeannette Scholl, Dimitris Dionyssiou, Efterpi Demiri, Cornelia Halin, Lothar C. Dieterich, Michael Detmar

×

Dual action of neurokinin-1 antagonists on Mas-related GPCRs
Ehsan Azimi, Vemuri B. Reddy, Kai-Ting C. Shade, Robert M. Anthony, Sebastien Talbot, Paula Juliana Seadi Pereira, Ethan A. Lerner
Ehsan Azimi, Vemuri B. Reddy, Kai-Ting C. Shade, Robert M. Anthony, Sebastien Talbot, Paula Juliana Seadi Pereira, Ethan A. Lerner
View: Text | PDF

Dual action of neurokinin-1 antagonists on Mas-related GPCRs

  • Text
  • PDF
Abstract

The challenge of translating findings from animal models to the clinic is well known. An example of this challenge is the striking effectiveness of neurokinin-1 receptor (NK-1R) antagonists in mouse models of inflammation coupled with their equally striking failure in clinical investigations in humans. Here, we provide an explanation for this dichotomy: Mas-related GPCRs (Mrgprs) mediate some aspects of inflammation that had been considered mediated by NK-1R. In support of this explanation, we show that conventional NK-1R antagonists have off-target activity on the mouse receptor MrgprB2 but not on the homologous human receptor MRGPRX2. An unrelated tripeptide NK-1R antagonist has dual activity on MRGPRX2. This tripeptide both suppresses itch in mice and inhibits degranulation from the LAD-2 human mast cell line elicited by basic secretagogue activation of MRGPRX2. Antagonists of Mrgprs may fill the void left by the failure of NK-1R antagonists.

Authors

Ehsan Azimi, Vemuri B. Reddy, Kai-Ting C. Shade, Robert M. Anthony, Sebastien Talbot, Paula Juliana Seadi Pereira, Ethan A. Lerner

×

Safety and efficacy of the JAK inhibitor tofacitinib citrate in patients with alopecia areata
Milène Kennedy Crispin, Justin M. Ko, Brittany G. Craiglow, Shufeng Li, Gautam Shankar, Jennifer R. Urban, James C. Chen, Jane E. Cerise, Ali Jabbari, Mårten C.G. Winge, M. Peter Marinkovich, Angela M. Christiano, Anthony E. Oro, Brett A. King
Milène Kennedy Crispin, Justin M. Ko, Brittany G. Craiglow, Shufeng Li, Gautam Shankar, Jennifer R. Urban, James C. Chen, Jane E. Cerise, Ali Jabbari, Mårten C.G. Winge, M. Peter Marinkovich, Angela M. Christiano, Anthony E. Oro, Brett A. King
View: Text | PDF

Safety and efficacy of the JAK inhibitor tofacitinib citrate in patients with alopecia areata

  • Text
  • PDF
Abstract

BACKGROUND. Alopecia areata (AA) is an autoimmune disease characterized by hair loss mediated by CD8+ T cells. There are no reliably effective therapies for AA. Based on recent developments in the understanding of the pathomechanism of AA, JAK inhibitors appear to be a therapeutic option; however, their efficacy for the treatment of AA has not been systematically examined.

METHODS. This was a 2-center, open-label, single-arm trial using the pan-JAK inhibitor, tofacitinib citrate, for AA with >50% scalp hair loss, alopecia totalis (AT), and alopecia universalis (AU). Tofacitinib (5 mg) was given twice daily for 3 months. Endpoints included regrowth of scalp hair, as assessed by the severity of alopecia tool (SALT), duration of hair growth after completion of therapy, and disease transcriptome.

RESULTS. Of 66 subjects treated, 32% experienced 50% or greater improvement in SALT score. AA and ophiasis subtypes were more responsive than AT and AU subtypes. Shorter duration of disease and histological peribulbar inflammation on pretreatment scalp biopsies were associated with improvement in SALT score. Drug cessation resulted in disease relapse in 8.5 weeks. Adverse events were limited to grade I and II infections. An AA responsiveness to JAK/STAT inhibitors score was developed to segregate responders and nonresponders, and the previously developed AA disease activity index score tracked response to treatment.

CONCLUSIONS. At the dose and duration studied, tofacitinib is a safe and effective treatment for severe AA, though it does not result in a durable response. Transcriptome changes reveal unexpected molecular complexity within the disease.

TRIAL REGISTRATION. ClinicalTrials.gov NCT02197455 and NCT02312882.

FUNDING. This work was supported by the US Department of Veterans Affairs Office of Research and Development, National Institute of Arthritis and Musculoskeletal and Skin Diseases National Institutes of Health grant R01 AR47223 and U01 AR67173, the National Psoriasis Foundation, the Swedish Society of Medicine, the Fernström Foundation, the Locks of Love Foundation, the National Alopecia Areata Foundation, and the Ranjini and Ajay Poddar Resource Fund for Dermatologic Diseases Research.

Authors

Milène Kennedy Crispin, Justin M. Ko, Brittany G. Craiglow, Shufeng Li, Gautam Shankar, Jennifer R. Urban, James C. Chen, Jane E. Cerise, Ali Jabbari, Mårten C.G. Winge, M. Peter Marinkovich, Angela M. Christiano, Anthony E. Oro, Brett A. King

×

Oral ruxolitinib induces hair regrowth in patients with moderate-to-severe alopecia areata
Julian Mackay-Wiggan, Ali Jabbari, Nhan Nguyen, Jane E. Cerise, Charlotte Clark, Grace Ulerio, Megan Furniss, Roger Vaughan, Angela M. Christiano, Raphael Clynes
Julian Mackay-Wiggan, Ali Jabbari, Nhan Nguyen, Jane E. Cerise, Charlotte Clark, Grace Ulerio, Megan Furniss, Roger Vaughan, Angela M. Christiano, Raphael Clynes
View: Text | PDF

Oral ruxolitinib induces hair regrowth in patients with moderate-to-severe alopecia areata

  • Text
  • PDF
Abstract

BACKGROUND. Alopecia areata (AA) is a common autoimmune disease with a lifetime risk of 1.7%; there are no FDA-approved treatments for AA. We previously identified a dominant IFN-γ transcriptional signature in cytotoxic T lymphocytes (CTLs) in human and mouse AA skin and showed that treatment with JAK inhibitors induced durable hair regrowth in mice by targeting this pathway. Here, we investigated the use of the oral JAK1/2 inhibitor ruxolitinib in the treatment of patients with moderate-to-severe AA.

METHODS. We initiated an open-label clinical trial of 12 patients with moderate-to-severe AA, using oral ruxolitinib, 20 mg twice per day, for 3–6 months of treatment followed by 3 months follow-up off drug. The primary endpoint was the proportion of subjects with 50% or greater hair regrowth from baseline to end of treatment.

RESULTS. Nine of twelve patients (75%) demonstrated a remarkable response to treatment, with average hair regrowth of 92% at the end of treatment. Safety parameters remained largely within normal limits, and no serious adverse effects were reported. Gene expression profiling revealed treatment-related downregulation of inflammatory markers, including signatures for CTLs and IFN response genes and upregulation of hair-specific markers.

CONCLUSION. In this pilot study, 9 of 12 patients (75%) treated with ruxolitinib showed significant scalp hair regrowth and improvement of AA. Larger randomized controlled trials are needed to further assess the safety and efficacy of ruxolitinib in the treatment of AA.

TRIAL REGISTRATION. Clinicaltrials.gov NCT01950780.

FUNDING. Locks of Love Foundation, the Alopecia Areata Initiative, NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), and the Irving Institute for Clinical and Translational Research/Columbia University Medical Center Clinical and Translational Science Award (CUMC CTSA).

Authors

Julian Mackay-Wiggan, Ali Jabbari, Nhan Nguyen, Jane E. Cerise, Charlotte Clark, Grace Ulerio, Megan Furniss, Roger Vaughan, Angela M. Christiano, Raphael Clynes

×

Endothelial and circulating C19MC microRNAs are biomarkers of infantile hemangioma
Graham M. Strub, Andrew L. Kirsh, Mark E. Whipple, Winston P. Kuo, Rachel B. Keller, Raj P. Kapur, Mark W. Majesky, Jonathan A. Perkins
Graham M. Strub, Andrew L. Kirsh, Mark E. Whipple, Winston P. Kuo, Rachel B. Keller, Raj P. Kapur, Mark W. Majesky, Jonathan A. Perkins
View: Text | PDF

Endothelial and circulating C19MC microRNAs are biomarkers of infantile hemangioma

  • Text
  • PDF
Abstract

Infantile hemangioma (IH) is the most common vascular tumor of infancy, and it uniquely regresses in response to oral propranolol. MicroRNAs (miRNAs) have emerged as key regulators of vascular development and are dysregulated in many disease processes, but the role of miRNAs in IH growth has not been investigated. We report expression of C19MC, a primate-specific megacluster of miRNAs expressed in placenta with rare expression in postnatal tissues, in glucose transporter 1–expressing (GLUT-1–expressing) IH endothelial cells and in the plasma of children with IH. Tissue or circulating C19MC miRNAs were not detectable in patients having 9 other types of vascular anomalies or unaffected children, identifying C19MC miRNAs as the first circulating biomarkers of IH. Levels of circulating C19MC miRNAs correlated with IH tumor size and propranolol treatment response, and IH tissue from children treated with propranolol or from children with partially involuted tumors contained lower levels of C19MC miRNAs than untreated, proliferative tumors, implicating C19MC miRNAs as potential drivers of IH pathogenesis. Detection of C19MC miRNAs in the circulation of infants with IH may provide a specific and noninvasive means of IH diagnosis and identification of candidates for propranolol therapy as well as a means to monitor treatment response.

Authors

Graham M. Strub, Andrew L. Kirsh, Mark E. Whipple, Winston P. Kuo, Rachel B. Keller, Raj P. Kapur, Mark W. Majesky, Jonathan A. Perkins

×
  • ← Previous
  • 1
  • 2
  • …
  • 10
  • 11
  • 12
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts