Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Cell biology

  • 462 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 40
  • 41
  • 42
  • …
  • 46
  • 47
  • Next →
RIPK3 promotes sepsis-induced acute kidney injury via mitochondrial dysfunction
Angara Sureshbabu, Edwin Patino, Kevin C. Ma, Kristian Laursen, Eli J. Finkelsztein, Oleh Akchurin, Thangamani Muthukumar, Stefan W. Ryter, Lorraine Gudas, Augustine M. K. Choi, Mary E. Choi
Angara Sureshbabu, Edwin Patino, Kevin C. Ma, Kristian Laursen, Eli J. Finkelsztein, Oleh Akchurin, Thangamani Muthukumar, Stefan W. Ryter, Lorraine Gudas, Augustine M. K. Choi, Mary E. Choi
View: Text | PDF

RIPK3 promotes sepsis-induced acute kidney injury via mitochondrial dysfunction

  • Text
  • PDF
Abstract

Sepsis causes acute kidney injury (AKI) in critically ill patients, although the pathophysiology remains unclear. The receptor-interacting protein kinase-3 (RIPK3), a cardinal regulator of necroptosis, has recently been implicated in the pathogenesis of human disease. In mice subjected to polymicrobial sepsis, we demonstrate that RIPK3 promotes sepsis-induced AKI. Utilizing genetic deletion and biochemical approaches in vitro and in vivo, we identify a potentially novel pathway by which RIPK3 aggravates kidney tubular injury independently of the classical mixed lineage kinase domain-like protein–dependent (MLKL-dependent) necroptosis pathway. In kidney tubular epithelial cells, we show that RIPK3 promotes oxidative stress and mitochondrial dysfunction involving upregulation of NADPH oxidase-4 (NOX4) and inhibition of mitochondrial complex I and –III, and that RIPK3 and NOX4 are critical for kidney tubular injury in vivo. Furthermore, we demonstrate that RIPK3 is required for increased mitochondrial translocation of NOX4 in response to proinflammatory stimuli, by a mechanism involving protein-protein interactions. Finally, we observed elevated urinary and plasma RIPK3 levels in human patients with sepsis-induced AKI, representing potential markers of this condition. In conclusion, we identify a pathway by which RIPK3 promotes kidney tubular injury via mitochondrial dysfunction, independently of MLKL, which may represent a promising therapeutic target in sepsis-induced AKI.

Authors

Angara Sureshbabu, Edwin Patino, Kevin C. Ma, Kristian Laursen, Eli J. Finkelsztein, Oleh Akchurin, Thangamani Muthukumar, Stefan W. Ryter, Lorraine Gudas, Augustine M. K. Choi, Mary E. Choi

×

Macrophage P2X4 receptors augment bacterial killing and protect against sepsis
Balázs Csóka, Zoltán H. Németh, Ildikó Szabó, Daryl L. Davies, Zoltán V. Varga, János Pálóczi, Simonetta Falzoni, Francesco Di Virgilio, Rieko Muramatsu, Toshihide Yamashita, Pál Pacher, György Haskó
Balázs Csóka, Zoltán H. Németh, Ildikó Szabó, Daryl L. Davies, Zoltán V. Varga, János Pálóczi, Simonetta Falzoni, Francesco Di Virgilio, Rieko Muramatsu, Toshihide Yamashita, Pál Pacher, György Haskó
View: Text | PDF

Macrophage P2X4 receptors augment bacterial killing and protect against sepsis

  • Text
  • PDF
Abstract

The macrophage is a major phagocytic cell type, and its impaired function is a primary cause of immune paralysis, organ injury, and death in sepsis. An incomplete understanding of the endogenous molecules that regulate macrophage bactericidal activity is a major barrier for developing effective therapies for sepsis. Using an in vitro killing assay, we report here that the endogenous purine ATP augments the killing of sepsis-causing bacteria by macrophages through P2X4 receptors (P2X4Rs). Using newly developed transgenic mice expressing a bioluminescent ATP probe on the cell surface, we found that extracellular ATP levels increase during sepsis, indicating that ATP may contribute to bacterial killing in vivo. Studies with P2X4R-deficient mice subjected to sepsis confirm the role of extracellular ATP acting on P2X4Rs in killing bacteria and protecting against organ injury and death. Results with adoptive transfer of macrophages, myeloid-specific P2X4R-deficient mice, and P2rx4 tdTomato reporter mice indicate that macrophages are essential for the antibacterial, antiinflammatory, and organ protective effects of P2X4Rs in sepsis. Pharmacological targeting of P2X4Rs with the allosteric activator ivermectin protects against bacterial dissemination and mortality in sepsis. We propose that P2X4Rs represent a promising target for drug development to control bacterial growth in sepsis and other infections.

Authors

Balázs Csóka, Zoltán H. Németh, Ildikó Szabó, Daryl L. Davies, Zoltán V. Varga, János Pálóczi, Simonetta Falzoni, Francesco Di Virgilio, Rieko Muramatsu, Toshihide Yamashita, Pál Pacher, György Haskó

×

Aquaporin-1 regulates platelet procoagulant membrane dynamics and in vivo thrombosis
Ejaife O. Agbani, Christopher M. Williams, Yong Li, Marion T.J. van den Bosch, Samantha F. Moore, Adele Mauroux, Lorna Hodgson, Alan S. Verkman, Ingeborg Hers, Alastair W. Poole
Ejaife O. Agbani, Christopher M. Williams, Yong Li, Marion T.J. van den Bosch, Samantha F. Moore, Adele Mauroux, Lorna Hodgson, Alan S. Verkman, Ingeborg Hers, Alastair W. Poole
View: Text | PDF

Aquaporin-1 regulates platelet procoagulant membrane dynamics and in vivo thrombosis

  • Text
  • PDF
Abstract

In response to collagen stimulation, platelets use a coordinated system of fluid entry to undergo membrane ballooning, procoagulant spreading, and microvesiculation. We hypothesized that water entry was mediated by the water channel aquaporin-1 (AQP1) and aimed to determine its role in the platelet procoagulant response and thrombosis. We established that human and mouse platelets express AQP1 and localize to internal tubular membrane structures. However, deletion of AQP1 had minimal effects on collagen-induced platelet granule secretion, aggregation, or membrane ballooning. Conversely, procoagulant spreading, microvesiculation, phosphatidylserine exposure, and clot formation time were significantly diminished. Furthermore, in vivo thrombus formation after FeCl3 injury to carotid arteries was also markedly suppressed in AQP1-null mice, but hemostasis after tail bleeding remained normal. The mechanism involves an AQP1-mediated rapid membrane stretching during procoagulant spreading but not ballooning, leading to calcium entry through mechanosensitive cation channels and a full procoagulant response. We conclude that AQP1 is a major regulator of the platelet procoagulant response, able to modulate coagulation after injury or pathologic stimuli without affecting other platelet functional responses or normal hemostasis. Clinically effective AQP1 inhibitors may therefore represent a novel class of antiprocoagulant antithrombotics.

Authors

Ejaife O. Agbani, Christopher M. Williams, Yong Li, Marion T.J. van den Bosch, Samantha F. Moore, Adele Mauroux, Lorna Hodgson, Alan S. Verkman, Ingeborg Hers, Alastair W. Poole

×

Cystic fibrosis–related diabetes is caused by islet loss and inflammation
Nathaniel J. Hart, Radhika Aramandla, Gregory Poffenberger, Cody Fayolle, Ariel H. Thames, Austin Bautista, Aliya F. Spigelman, Jenny Aurielle B. Babon, Megan E. DeNicola, Prasanna K. Dadi, William S. Bush, Appakalai N. Balamurugan, Marcela Brissova, Chunhua Dai, Nripesh Prasad, Rita Bottino, David A. Jacobson, Mitchell L. Drumm, Sally C. Kent, Patrick E. MacDonald, Alvin C. Powers
Nathaniel J. Hart, Radhika Aramandla, Gregory Poffenberger, Cody Fayolle, Ariel H. Thames, Austin Bautista, Aliya F. Spigelman, Jenny Aurielle B. Babon, Megan E. DeNicola, Prasanna K. Dadi, William S. Bush, Appakalai N. Balamurugan, Marcela Brissova, Chunhua Dai, Nripesh Prasad, Rita Bottino, David A. Jacobson, Mitchell L. Drumm, Sally C. Kent, Patrick E. MacDonald, Alvin C. Powers
View: Text | PDF

Cystic fibrosis–related diabetes is caused by islet loss and inflammation

  • Text
  • PDF
Abstract

Cystic fibrosis–related (CF-related) diabetes (CFRD) is an increasingly common and devastating comorbidity of CF, affecting approximately 35% of adults with CF. However, the underlying causes of CFRD are unclear. Here, we examined cystic fibrosis transmembrane conductance regulator (CFTR) islet expression and whether the CFTR participates in islet endocrine cell function using murine models of β cell CFTR deletion and normal and CF human pancreas and islets. Specific deletion of CFTR from murine β cells did not affect β cell function. In human islets, CFTR mRNA was minimally expressed, and CFTR protein and electrical activity were not detected. Isolated CF/CFRD islets demonstrated appropriate insulin and glucagon secretion, with few changes in key islet-regulatory transcripts. Furthermore, approximately 65% of β cell area was lost in CF donors, compounded by pancreatic remodeling and immune infiltration of the islet. These results indicate that CFRD is caused by β cell loss and intraislet inflammation in the setting of a complex pleiotropic disease and not by intrinsic islet dysfunction from CFTR mutation.

Authors

Nathaniel J. Hart, Radhika Aramandla, Gregory Poffenberger, Cody Fayolle, Ariel H. Thames, Austin Bautista, Aliya F. Spigelman, Jenny Aurielle B. Babon, Megan E. DeNicola, Prasanna K. Dadi, William S. Bush, Appakalai N. Balamurugan, Marcela Brissova, Chunhua Dai, Nripesh Prasad, Rita Bottino, David A. Jacobson, Mitchell L. Drumm, Sally C. Kent, Patrick E. MacDonald, Alvin C. Powers

×

Adiponectin/T-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release
Yoshinari Obata, Shunbun Kita, Yoshihisa Koyama, Shiro Fukuda, Hiroaki Takeda, Masatomo Takahashi, Yuya Fujishima, Hirofumi Nagao, Shigeki Masuda, Yoshimitsu Tanaka, Yuto Nakamura, Hitoshi Nishizawa, Tohru Funahashi, Barbara Ranscht, Yoshihiro Izumi, Takeshi Bamba, Eiichiro Fukusaki, Rikinari Hanayama, Shoichi Shimada, Norikazu Maeda, Iichiro Shimomura
Yoshinari Obata, Shunbun Kita, Yoshihisa Koyama, Shiro Fukuda, Hiroaki Takeda, Masatomo Takahashi, Yuya Fujishima, Hirofumi Nagao, Shigeki Masuda, Yoshimitsu Tanaka, Yuto Nakamura, Hitoshi Nishizawa, Tohru Funahashi, Barbara Ranscht, Yoshihiro Izumi, Takeshi Bamba, Eiichiro Fukusaki, Rikinari Hanayama, Shoichi Shimada, Norikazu Maeda, Iichiro Shimomura
View: Text | PDF

Adiponectin/T-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release

  • Text
  • PDF
Abstract

Adiponectin, an adipocyte-derived circulating protein, accumulates in vasculature, heart, and skeletal muscles through interaction with a unique glycosylphosphatidylinositol-anchored cadherin, T-cadherin. Recent studies have demonstrated that such accumulation is essential for adiponectin-mediated cardiovascular protection. Here, we demonstrate that the adiponectin/T-cadherin system enhances exosome biogenesis and secretion, leading to the decrease of cellular ceramides. Adiponectin accumulated inside multivesicular bodies, the site of exosome generation, in cultured cells and in vivo aorta, and also in exosomes in conditioned media and in blood, together with T-cadherin. The systemic level of exosomes in blood was significantly affected by adiponectin or T-cadherin in vivo. Adiponectin increased exosome biogenesis from the cells, dependently on T-cadherin, but not on AdipoR1 or AdipoR2. Such enhancement of exosome release accompanied the reduction of cellular ceramides through ceramide efflux in exosomes. Consistently, the ceramide reduction by adiponectin was found in aortas of WT mice treated with angiotensin II, but not in T-cadherin–knockout mice. Our findings provide insights into adiponectin/T-cadherin–mediated organ protection through exosome biogenesis and secretion.

Authors

Yoshinari Obata, Shunbun Kita, Yoshihisa Koyama, Shiro Fukuda, Hiroaki Takeda, Masatomo Takahashi, Yuya Fujishima, Hirofumi Nagao, Shigeki Masuda, Yoshimitsu Tanaka, Yuto Nakamura, Hitoshi Nishizawa, Tohru Funahashi, Barbara Ranscht, Yoshihiro Izumi, Takeshi Bamba, Eiichiro Fukusaki, Rikinari Hanayama, Shoichi Shimada, Norikazu Maeda, Iichiro Shimomura

×

Allele-specific differences in transcriptome, miRNome, and mitochondrial function in two hypertrophic cardiomyopathy mouse models
Styliani Vakrou, Ryuya Fukunaga, D. Brian Foster, Lars Sorensen, Yamin Liu, Yufan Guan, Kirubel Woldemichael, Roberto Pineda-Reyes, Ting Liu, Jill C. Tardiff, Leslie A. Leinwand, Carlo G. Tocchetti, Theodore P. Abraham, Brian O’Rourke, Miguel A. Aon, M. Roselle Abraham
Styliani Vakrou, Ryuya Fukunaga, D. Brian Foster, Lars Sorensen, Yamin Liu, Yufan Guan, Kirubel Woldemichael, Roberto Pineda-Reyes, Ting Liu, Jill C. Tardiff, Leslie A. Leinwand, Carlo G. Tocchetti, Theodore P. Abraham, Brian O’Rourke, Miguel A. Aon, M. Roselle Abraham
View: Text | PDF

Allele-specific differences in transcriptome, miRNome, and mitochondrial function in two hypertrophic cardiomyopathy mouse models

  • Text
  • PDF
Abstract

Hypertrophic cardiomyopathy (HCM) stems from mutations in sarcomeric proteins that elicit distinct biophysical sequelae, which in turn may yield radically different intracellular signaling and molecular pathologic profiles. These signaling events remain largely unaddressed by clinical trials that have selected patients based on clinical HCM diagnosis, irrespective of genotype. In this study, we determined how two mouse models of HCM differ, with respect to cellular/mitochondrial function and molecular biosignatures, at an early stage of disease. We show that hearts from young R92W-TnT and R403Q-αMyHC mutation–bearing mice differ in their transcriptome, miRNome, intracellular redox environment, mitochondrial antioxidant defense mechanisms, and susceptibility to mitochondrial permeability transition pore opening. Pathway analysis of mRNA-sequencing data and microRNA profiles indicate that R92W-TnT mutants exhibit a biosignature consistent with activation of profibrotic TGF-β signaling. Our results suggest that the oxidative environment and mitochondrial impairment in young R92W-TnT mice promote activation of TGF-β signaling that foreshadows a pernicious phenotype in young individuals. Of the two mutations, R92W-TnT is more likely to benefit from anti–TGF-β signaling effects conferred by angiotensin receptor blockers and may be responsive to mitochondrial antioxidant strategies in the early stage of disease. Molecular and functional profiling may therefore serve as aids to guide precision therapy for HCM.

Authors

Styliani Vakrou, Ryuya Fukunaga, D. Brian Foster, Lars Sorensen, Yamin Liu, Yufan Guan, Kirubel Woldemichael, Roberto Pineda-Reyes, Ting Liu, Jill C. Tardiff, Leslie A. Leinwand, Carlo G. Tocchetti, Theodore P. Abraham, Brian O’Rourke, Miguel A. Aon, M. Roselle Abraham

×

Active epithelial Hippo signaling in idiopathic pulmonary fibrosis
Jason J. Gokey, Anusha Sridharan, Yan Xu, Jenna Green, Gianni Carraro, Barry R. Stripp, Anne-Karina T. Perl, Jeffrey A. Whitsett
Jason J. Gokey, Anusha Sridharan, Yan Xu, Jenna Green, Gianni Carraro, Barry R. Stripp, Anne-Karina T. Perl, Jeffrey A. Whitsett
View: Text | PDF

Active epithelial Hippo signaling in idiopathic pulmonary fibrosis

  • Text
  • PDF
Abstract

Hippo/YAP signaling plays pleiotropic roles in the regulation of cell proliferation and differentiation during organogenesis and tissue repair. Herein we demonstrate increased YAP activity in respiratory epithelial cells in lungs of patients with idiopathic pulmonary fibrosis (IPF), a common, lethal form of interstitial lung disease (ILD). Immunofluorescence staining in IPF epithelial cells demonstrated increased nuclear YAP and loss of MST1/2. Bioinformatic analyses of epithelial cell RNA profiles predicted increased activity of YAP and increased canonical mTOR/PI3K/AKT signaling in IPF. Phospho-S6 (p-S6) and p-PTEN were increased in IPF epithelial cells, consistent with activation of mTOR signaling. Expression of YAP (S127A), a constitutively active form of YAP, in human bronchial epithelial cells (HBEC3s) increased p-S6 and p-PI3K, cell proliferation and migration, processes that were inhibited by the YAP-TEAD inhibitor verteporfin. Activation of p-S6 was required for enhancing and stabilizing YAP, and the p-S6 inhibitor temsirolimus blocked nuclear YAP localization and suppressed expression of YAP target genes CTGF, AXL, and AJUBA (JUB). YAP and mTOR/p-S6 signaling pathways interact to induce cell proliferation and migration, and inhibit epithelial cell differentiation that may contribute to the pathogenesis of IPF.

Authors

Jason J. Gokey, Anusha Sridharan, Yan Xu, Jenna Green, Gianni Carraro, Barry R. Stripp, Anne-Karina T. Perl, Jeffrey A. Whitsett

×

Inhibition of the methyltranferase EZH2 improves aortic performance in experimental thoracic aortic aneurysm
Christian L. Lino Cardenas, Chase W. Kessinger, Carolyn MacDonald, Arminder S. Jassar, Eric M. Isselbacher, Farouc A. Jaffer, Mark E. Lindsay
Christian L. Lino Cardenas, Chase W. Kessinger, Carolyn MacDonald, Arminder S. Jassar, Eric M. Isselbacher, Farouc A. Jaffer, Mark E. Lindsay
View: Text | PDF

Inhibition of the methyltranferase EZH2 improves aortic performance in experimental thoracic aortic aneurysm

  • Text
  • PDF
Abstract

Loss-of-function mutations in genes encoding contractile proteins have been observed in thoracic aortic aneurysms (TAA). To gain insight into the contribution of contractile protein deficiency in the pathogenesis of TAA, we examined human aneurysm samples. We found multiple contractile gene products deficient in TAA samples, and in particular, expression of SM22α was inversely correlated with aneurysm size. SM22α-deficient mice demonstrated pregnancy-induced aortic dissection, and SM22α deficiency worsened aortic aneurysm in Fbn1C1039G/+ (Marfan) mice, validating this gene product as a TAA effector. We found that repression of SM22α was enforced by increased activity of the methyltransferase EZH2. TGF-β effectors such as SMAD3 were excluded from binding SM22α-encoding chromatin (TAGLN) in TAA samples, while treatment with the EZH2 inhibitor GSK343 improved cytoskeletal architecture and restored SM22α expression. Finally, inhibition of EZH2 improved aortic performance in Fbn1C1039G/+ mice, in association with restoration of contractile protein expression (including SM22α). Together, these data inform our understanding of contractile protein deficiency in TAA and support the pursuit of chromatin modifying factors as therapeutic targets in aortic disease.

Authors

Christian L. Lino Cardenas, Chase W. Kessinger, Carolyn MacDonald, Arminder S. Jassar, Eric M. Isselbacher, Farouc A. Jaffer, Mark E. Lindsay

×

Calnexin is necessary for T cell transmigration into the central nervous system
Joanna Jung, Paul Eggleton, Alison Robinson, Jessica Wang, Nick Gutowski, Janet Holley, Jia Newcombe, Elzbieta Dudek, Amber M. Paul, Douglas Zochodne, Allison Kraus, Christopher Power, Luis B. Agellon, Marek Michalak
Joanna Jung, Paul Eggleton, Alison Robinson, Jessica Wang, Nick Gutowski, Janet Holley, Jia Newcombe, Elzbieta Dudek, Amber M. Paul, Douglas Zochodne, Allison Kraus, Christopher Power, Luis B. Agellon, Marek Michalak
View: Text | PDF

Calnexin is necessary for T cell transmigration into the central nervous system

  • Text
  • PDF
Abstract

In multiple sclerosis (MS), a demyelinating inflammatory disease of the CNS, and its animal model (experimental autoimmune encephalomyelitis; EAE), circulating immune cells gain access to the CNS across the blood-brain barrier to cause inflammation, myelin destruction, and neuronal damage. Here, we discovered that calnexin, an ER chaperone, is highly abundant in human brain endothelial cells of MS patients. Conversely, mice lacking calnexin exhibited resistance to EAE induction, no evidence of immune cell infiltration into the CNS, and no induction of inflammation markers within the CNS. Furthermore, calnexin deficiency in mice did not alter the development or function of the immune system. Instead, the loss of calnexin led to a defect in brain endothelial cell function that resulted in reduced T cell trafficking across the blood-brain barrier. These findings identify calnexin in brain endothelial cells as a potentially novel target for developing strategies aimed at managing or preventing the pathogenic cascade that drives neuroinflammation and destruction of the myelin sheath in MS.

Authors

Joanna Jung, Paul Eggleton, Alison Robinson, Jessica Wang, Nick Gutowski, Janet Holley, Jia Newcombe, Elzbieta Dudek, Amber M. Paul, Douglas Zochodne, Allison Kraus, Christopher Power, Luis B. Agellon, Marek Michalak

×

Exosomal microRNA predicts and protects against severe bronchopulmonary dysplasia in extremely premature infants
Charitharth Vivek Lal, Nelida Olave, Colm Travers, Gabriel Rezonzew, Kalsang Dolma, Alexandra Simpson, Brian Halloran, Zubair Aghai, Pragnya Das, Nirmal Sharma, Xin Xu, Kristopher Genschmer, Derek Russell, Tomasz Szul, Nengjun Yi, J. Edwin Blalock, Amit Gaggar, Vineet Bhandari, Namasivayam Ambalavanan
Charitharth Vivek Lal, Nelida Olave, Colm Travers, Gabriel Rezonzew, Kalsang Dolma, Alexandra Simpson, Brian Halloran, Zubair Aghai, Pragnya Das, Nirmal Sharma, Xin Xu, Kristopher Genschmer, Derek Russell, Tomasz Szul, Nengjun Yi, J. Edwin Blalock, Amit Gaggar, Vineet Bhandari, Namasivayam Ambalavanan
View: Text | PDF

Exosomal microRNA predicts and protects against severe bronchopulmonary dysplasia in extremely premature infants

  • Text
  • PDF
Abstract

Premature infants are at high risk for developing bronchopulmonary dysplasia (BPD), characterized by chronic inflammation and inhibition of lung development, which we have recently identified as being modulated by microRNAs (miRNAs) and alterations in the airway microbiome. Exosomes and exosomal miRNAs may regulate cell differentiation and tissue and organ development. We discovered that tracheal aspirates from infants with severe BPD had increased numbers of, but smaller, exosomes compared with term controls. Similarly, bronchoalveolar lavage fluid from hyperoxia-exposed mice (an animal model of BPD) and supernatants from hyperoxia-exposed human bronchial epithelial cells (in vitro model of BPD) had increased exosomes compared with air controls. Next, in a prospective cohort study of tracheal aspirates obtained at birth from extremely preterm infants, utilizing independent discovery and validation cohorts, we identified unbiased exosomal miRNA signatures predictive of severe BPD. The strongest signal of reduced miR-876-3p in BPD-susceptible compared with BPD-resistant infants was confirmed in the animal model and in vitro models of BPD. In addition, based on our recent discovery of increased Proteobacteria in the airway microbiome being associated with BPD, we developed potentially novel in vivo and in vitro models for BPD combining Proteobacterial LPS and hyperoxia exposure. Addition of LPS led to a larger reduction in exosomal miR 876-3p in both hyperoxia and normoxia compared with hyperoxia alone, thus indicating a potential mechanism by which alterations in microbiota can suppress miR 876-3p. Gain of function of miR 876-3p improved the alveolar architecture in the in vivo BPD model, demonstrating a causal link between miR 876-3p and BPD. In summary, we provide evidence for the strong predictive biomarker potential of miR 876-3p in severe BPD. We also provide insights on the pathogenesis of neonatal lung disease, as modulated by hyperoxia and microbial product–induced changes in exosomal miRNA 876-3p, which could be targeted for future therapeutic development.

Authors

Charitharth Vivek Lal, Nelida Olave, Colm Travers, Gabriel Rezonzew, Kalsang Dolma, Alexandra Simpson, Brian Halloran, Zubair Aghai, Pragnya Das, Nirmal Sharma, Xin Xu, Kristopher Genschmer, Derek Russell, Tomasz Szul, Nengjun Yi, J. Edwin Blalock, Amit Gaggar, Vineet Bhandari, Namasivayam Ambalavanan

×
  • ← Previous
  • 1
  • 2
  • …
  • 40
  • 41
  • 42
  • …
  • 46
  • 47
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts