Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Autoimmunity

  • 314 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 19
  • 20
  • 21
  • …
  • 31
  • 32
  • Next →
CD19-targeted CAR regulatory T cells suppress B cell activities without GvHD
Yuki Imura, Makoto Ando, Taisuke Kondo, Minako Ito, Akihiko Yoshimura
Yuki Imura, Makoto Ando, Taisuke Kondo, Minako Ito, Akihiko Yoshimura
View: Text | PDF

CD19-targeted CAR regulatory T cells suppress B cell activities without GvHD

  • Text
  • PDF
Abstract

Regulatory T cells (Tregs) play essential roles in maintaining immunological self-tolerance and preventing autoimmunity. The adoptive transfer of antigen-specific Tregs has been expected to be a potent therapeutic method for autoimmune diseases, severe allergy, and rejection in organ transplantation. However, effective Treg therapy has not yet been established because of the difficulty in preparing a limited number of antigen-specific Tregs. Chimeric antigen receptor (CAR) T cells have been shown to be a powerful therapeutic method for treating B cell lymphomas, but application of CAR to Treg-mediated therapy has not yet been established. Here, we generated CD19-targeted CAR (CD19-CAR) Tregs from human peripheral blood mononuclear cells (hPBMCs) and optimized the fraction of the Treg source as CD4+CD25+CD127lowCD45RA+CD45RO–. CD19-CAR Tregs could be expanded in vitro while maintaining Treg properties, including a high expression of the latent form of TGF-β. CD19-CAR Tregs suppressed IgG antibody production from primary B cell differentiation in vitro via a TGF-β-dependent mechanism. Unlike conventional CD19-CAR CD8+ T cells, CD19-CAR Tregs suppressed antibody production in immunodeficient mice that were reconstituted with hPBMCs with reducing the risk of graft-versus-host disease. Therefore, the adoptive transfer of CD19-CAR Tregs may provide a novel therapeutic method for treating autoantibody-mediated autoimmune diseases.

Authors

Yuki Imura, Makoto Ando, Taisuke Kondo, Minako Ito, Akihiko Yoshimura

×

T cells expressing the lupus susceptibility allele Pbx1d enhance autoimmunity and atherosclerosis in dyslipidemic mice
Wei Li, Ahmed S. Elshikha, Caleb Cornaby, Xiangyu Teng, Georges Abboud, Josephine Brown, Xueyang Zou, Leilani Zeumer-Spataro, Brian Robusto, Seung-Chul Choi, Kristianna Fredenburg, Amy Major, Laurence Morel
Wei Li, Ahmed S. Elshikha, Caleb Cornaby, Xiangyu Teng, Georges Abboud, Josephine Brown, Xueyang Zou, Leilani Zeumer-Spataro, Brian Robusto, Seung-Chul Choi, Kristianna Fredenburg, Amy Major, Laurence Morel
View: Text | PDF

T cells expressing the lupus susceptibility allele Pbx1d enhance autoimmunity and atherosclerosis in dyslipidemic mice

  • Text
  • PDF
Abstract

Patients with systemic lupus erythematosus (SLE) present a high incidence of atherosclerosis, which contributes significantly to morbidity and mortality in this autoimmune disease. An impaired balance between regulatory (Treg) and follicular helper (Tfh) CD4+ T cells is shared by both diseases. However, whether there are common mechanisms of CD4+ T cell dysregulation between SLE and atherosclerosis remains unclear. Pre-B cell leukemia transcription factor 1 isoform d (Pbx1d) is a lupus susceptibility gene that regulates Tfh cell expansion and Treg cell homeostasis. Here, we investigated the role of T cells overexpressing Pbx1d in low-density lipoprotein receptor–deficient (Ldlr–/–) mice fed with a high-fat diet, an experimental model for atherosclerosis. Pbx1d-transgenic T cells exacerbated some phenotypes of atherosclerosis, which were associated with higher autoantibody production, increased Tfh cell frequency, and impaired Treg cell regulation, in Ldlr–/– mice as compared with control T cells. In addition, we showed that dyslipidemia and Pbx1d-transgenic expression independently impaired the differentiation and function of Treg cells in vitro, suggesting a gene/environment additive effect. Thus, our results suggest that the combination of Pbx1d expression in T cells and dyslipidemia exacerbates both atherosclerosis and autoimmunity, at least in part through a dysregulation of Treg cell homeostasis.

Authors

Wei Li, Ahmed S. Elshikha, Caleb Cornaby, Xiangyu Teng, Georges Abboud, Josephine Brown, Xueyang Zou, Leilani Zeumer-Spataro, Brian Robusto, Seung-Chul Choi, Kristianna Fredenburg, Amy Major, Laurence Morel

×

Neutrophil extracellular traps mediate articular cartilage damage and enhance cartilage component immunogenicity in rheumatoid arthritis
Carmelo Carmona-Rivera, Philip M. Carlucci, Rishi R. Goel, Eddie A. James, Stephen R. Brooks, Cliff R. Rims, Victoria Hoffmann, David A. Fox, Jane H. Buckner, Mariana J. Kaplan
Carmelo Carmona-Rivera, Philip M. Carlucci, Rishi R. Goel, Eddie A. James, Stephen R. Brooks, Cliff R. Rims, Victoria Hoffmann, David A. Fox, Jane H. Buckner, Mariana J. Kaplan
View: Text | PDF

Neutrophil extracellular traps mediate articular cartilage damage and enhance cartilage component immunogenicity in rheumatoid arthritis

  • Text
  • PDF
Abstract

Rheumatoid arthritis (RA) is characterized by synovial joint inflammation, cartilage damage and dysregulation of the adaptive immune system. While neutrophil extracellular traps (NETs) have been proposed to play a role in the generation of modified autoantigens and in the activation of synovial fibroblasts, it remains unknown whether NETs are directly involved in cartilage damage. Here, we report a new mechanism by which NET-derived elastase disrupts cartilage matrix and induces release membrane-bound peptidylarginine deiminase-2 (PAD2) by fibroblast-like synoviocytes (FLS). Cartilage fragments are subsequently citrullinated, internalized by FLS, and then presented to antigen-specific CD4+ T cells. Furthermore, immune-complexes containing citrullinated cartilage components can activate macrophages to release pro-inflammatory cytokines. HLA-DRB1*04:01 transgenic mice immunized with NETs develop autoantibodies to citrullinated cartilage proteins and display enhanced cartilage damage. Inhibition of NET-elastase rescues NET-mediated cartilage damage. These results show that NETs and neutrophil elastase externalized in these structures play fundamental pathogenic roles in promoting cartilage damage and synovial inflammation. Strategies targeting neutrophil elastase and NETs could have a therapeutic role in RA and in other inflammatory diseases associated with inflammatory joint damage.

Authors

Carmelo Carmona-Rivera, Philip M. Carlucci, Rishi R. Goel, Eddie A. James, Stephen R. Brooks, Cliff R. Rims, Victoria Hoffmann, David A. Fox, Jane H. Buckner, Mariana J. Kaplan

×

Mesenchymal stromal cells induce distinct myeloid-derived suppressor cells in inflammation
Hyun Ju Lee, Jung Hwa Ko, Hyeon Ji Kim, Hyun Jeong Jeong, Joo Youn Oh
Hyun Ju Lee, Jung Hwa Ko, Hyeon Ji Kim, Hyun Jeong Jeong, Joo Youn Oh
View: Text | PDF

Mesenchymal stromal cells induce distinct myeloid-derived suppressor cells in inflammation

  • Text
  • PDF
Abstract

Mesenchymal stem/stromal cells (MSCs) regulate immunity through myeloid-derived suppressor cells (MDSCs) which are a heterogeneous population of immature myeloid cells with phenotypic and functional diversity. Herein, we identified a distinct subset of MDSCs induced by MSCs in the BM under inflammatory conditions. MSCs directed the differentiation of Ly6Glo BM cells from CD11bhiLy6Chi to CD11bmidLy6Cmid cells both in cell contact-independent and -dependent manners upon GM-CSF stimulation in vitro and in mice with experimental autoimmune uveoretinitis (EAU). RNA sequencing indicated that MSC-induced CD11bmidLy6CmidLy6Glo cells had a distinct transcriptome profile from CD11bhiLy6ChiLy6Glo cells. Phenotypic, molecular, and functional analyses showed that CD11bmidLy6CmidLy6Glo cells differed from CD11bhiLy6ChiLy6Glo cells by low expression of MHC class II, co-stimulatory molecules, and pro-inflammatory cytokines, high production of immunoregulatory molecules, indifference to LPS, and inhibition of T cell proliferation and activation. Consequently, adoptive transfer of MSC-induced CD11bmidLy6CmidLy6Glo cells significantly attenuated the development of EAU in mice. Further mechanistic study revealed that suppression of prostaglandin E2 (PGE2) and HGF secretion in MSCs by siRNA transfection partially reversed the effects of MSCs on MDSC differentiation. Altogether, data demonstrate that MSCs drive the differentiation of BM cells toward CD11bmidLy6CmidLy6Glo MDSCs in part through HGF and COX-2/PGE2, leading to resolution of ocular autoimmune inflammation.

Authors

Hyun Ju Lee, Jung Hwa Ko, Hyeon Ji Kim, Hyun Jeong Jeong, Joo Youn Oh

×

A transcriptomic map of murine and human alopecia areata
Nicholas Borcherding, Sydney B. Crotts, Luana S. Ortolan, Nicholas Henderson, Nicholas L. Bormann, Ali Jabbari
Nicholas Borcherding, Sydney B. Crotts, Luana S. Ortolan, Nicholas Henderson, Nicholas L. Bormann, Ali Jabbari
View: Text | PDF

A transcriptomic map of murine and human alopecia areata

  • Text
  • PDF
Abstract

Alopecia areata (AA) is one of the most common autoimmune conditions, presenting initially with loss of hair without other overt skin changes. The unremarkable appearance of the skin surface contrasts with the complex immune activity occurring at the hair follicle. AA pathogenesis is due to the loss of immune privilege of the hair follicle leading to autoimmune attack. Although the literature has focused on CD8+ T cells, vital roles for CD4+ T cells and antigen-presenting cells have been suggested. Here, we use single-cell sequencing to reveal distinct expression profiles of immune cells in murine AA. We found clonal expansions of both CD4+ and CD8+ T cells, with shared clonotypes across varied transcriptional states. The murine AA data were used to generate highly predictive models of human AA disease. Finally, single-cell sequencing of T cells in human AA recapitulated the clonotypic findings and the gene expression of the predictive models.

Authors

Nicholas Borcherding, Sydney B. Crotts, Luana S. Ortolan, Nicholas Henderson, Nicholas L. Bormann, Ali Jabbari

×

Allograft inflammatory factor-1 in myeloid cells drives autoimmunity in type 1 diabetes
Diana M. Elizondo, Nailah Z.D. Brandy, Ricardo L. da Silva, Tatiana R. de Moura, Michael W. Lipscomb
Diana M. Elizondo, Nailah Z.D. Brandy, Ricardo L. da Silva, Tatiana R. de Moura, Michael W. Lipscomb
View: Text | PDF

Allograft inflammatory factor-1 in myeloid cells drives autoimmunity in type 1 diabetes

  • Text
  • PDF
Abstract

Allograft inflammatory factor-1 (AIF1) is a calcium-responsive cytoplasmic scaffold protein that directs hematopoiesis and immune responses within dendritic cells (DC) and macrophages. Although the role of AIF1 in transplant rejection and rheumatoid arthritis has been explored, little is known about its role in type 1 diabetes. Here, we show that in vivo silencing of AIF1 in NOD mice restrained infiltration of immune cells into the pancreas and inhibited diabetes incidence. Analyses of FACS-sorted CD45neg nonleukocyte populations from resected pancreatic islets showed markedly higher expression of insulin in the AIF1-silenced groups. Evaluation of CD45+ leukocytes revealed diminished infiltration of effector T cells and DC in the absence of AIF1. Transcriptional profiling further revealed a marked decrease in cDC1 DC-associated genes CD103, BATF3, and IRF8, which are required for orchestrating polarized type 1 immunity. Reduced T cell numbers within the islets were observed, with concomitant lower levels of IFN-γ and T-bet in AIF1-silenced cohorts. In turn, there was a reciprocal increase in functionally suppressive pancreas-resident CD25+Foxp3+CD4+ Tregs. Taken together, results show that AIF1 expression in myeloid cells plays a pivotal role in promoting type 1 diabetes and that its suppression restrains insulitis by shifting the immune microenvironment toward tolerance.

Authors

Diana M. Elizondo, Nailah Z.D. Brandy, Ricardo L. da Silva, Tatiana R. de Moura, Michael W. Lipscomb

×

Integrated urine proteomics and renal single-cell genomics identify an interferon-γ response gradient in lupus nephritis
Andrea Fava, Jill P. Buyon, Chandra Mohan, Ting Zhang, H. Michael Belmont, Peter Izmirly, Robert Clancy, Jose Monroy Trujillo, Derek M. Fine, Yuji Zhang, Laurence Magder, Deepak A. Rao, Arnon Arazi, Celine C. Berthier, Anne Davidson, Betty Diamond, Nir Hacohen, David Wofsy, William Apruzzese, The Accelerating Medicines Partnership, Soumya Raychaudhuri, Michelle Petri
Andrea Fava, Jill P. Buyon, Chandra Mohan, Ting Zhang, H. Michael Belmont, Peter Izmirly, Robert Clancy, Jose Monroy Trujillo, Derek M. Fine, Yuji Zhang, Laurence Magder, Deepak A. Rao, Arnon Arazi, Celine C. Berthier, Anne Davidson, Betty Diamond, Nir Hacohen, David Wofsy, William Apruzzese, The Accelerating Medicines Partnership, Soumya Raychaudhuri, Michelle Petri
View: Text | PDF

Integrated urine proteomics and renal single-cell genomics identify an interferon-γ response gradient in lupus nephritis

  • Text
  • PDF
Abstract

Lupus nephritis, one of the most serious manifestations of systemic lupus erythematosus (SLE), has both a heterogeneous clinical and pathological presentation. For example, proliferative nephritis identifies a more aggressive disease class that requires immunosuppression. However, the current classification system relies on the static appearance of histopathological morphology which does not capture differences in the inflammatory response. Therefore, a biomarker grounded in the disease biology is needed to understand the molecular heterogeneity of lupus nephritis and identify immunologic mechanism and pathways. Here, we analyzed the patterns of 1000 urine protein biomarkers in 30 patients with active lupus nephritis. We found that patients stratify over a chemokine gradient inducible by interferon-gamma. Higher values identified patients with proliferative lupus nephritis. After integrating the urine proteomics with the single-cell transcriptomics of kidney biopsies, it was observed that the urinary chemokines defining the gradient were predominantly produced by infiltrating CD8 T cells, along with natural killer and myeloid cells. The urine chemokine gradient significantly correlated with the number of kidney-infiltrating CD8 cells. These findings suggest that urine proteomics can capture the complex biology of the kidney in lupus nephritis. Patient-specific pathways may be noninvasively tracked in the urine in real time, enabling diagnosis and personalized treatment.

Authors

Andrea Fava, Jill P. Buyon, Chandra Mohan, Ting Zhang, H. Michael Belmont, Peter Izmirly, Robert Clancy, Jose Monroy Trujillo, Derek M. Fine, Yuji Zhang, Laurence Magder, Deepak A. Rao, Arnon Arazi, Celine C. Berthier, Anne Davidson, Betty Diamond, Nir Hacohen, David Wofsy, William Apruzzese, The Accelerating Medicines Partnership, Soumya Raychaudhuri, Michelle Petri

×

T cell exosome–derived miR-142-3p impairs glandular cell function in Sjögren’s syndrome
Juan Cortes-Troncoso, Shyh-Ing Jang, Paola Perez, Jorge Hidalgo, Tomoko Ikeuchi, Teresa Greenwell-Wild, Blake M. Warner, Niki M. Moutsopoulos, Ilias Alevizos
Juan Cortes-Troncoso, Shyh-Ing Jang, Paola Perez, Jorge Hidalgo, Tomoko Ikeuchi, Teresa Greenwell-Wild, Blake M. Warner, Niki M. Moutsopoulos, Ilias Alevizos
View: Text | PDF

T cell exosome–derived miR-142-3p impairs glandular cell function in Sjögren’s syndrome

  • Text
  • PDF
Abstract

Sjögren’s syndrome (SS) is a systemic autoimmune disease that mainly affects exocrine salivary and lacrimal glands. Local inflammation in the glands is thought to trigger glandular dysfunction and symptoms of dryness. However, the mechanisms underlying these processes are incompletely understood. Our work suggests T cell exosome–derived miR-142-3p as a pathogenic driver of immunopathology in SS. We first document miR-142-3p expression in the salivary glands of patients with SS, both in epithelial gland cells and within T cells of the inflammatory infiltrate, but not in healthy volunteers. Next, we show that activated T cells secreted exosomes containing miR-142-3p, which transferred into glandular cells. Finally, we uncover a functional role of miR-142-3p–containing exosomes in glandular cell dysfunction. We find that miR-142-3p targets key elements of intracellular Ca2+ signaling and cAMP production — sarco(endo)plasmic reticulum Ca2+ ATPase 2b (SERCA2B), ryanodine receptor 2 (RyR2), and adenylate cyclase 9 (AC9) — leading to restricted cAMP production, altered calcium signaling, and decreased protein production from salivary gland cells. Our work provides evidence for a functional role of the miR-142-3p in SS pathogenesis and promotes the concept that T cell activation may directly impair epithelial cell function through secretion of miRNA-containing exosomes.

Authors

Juan Cortes-Troncoso, Shyh-Ing Jang, Paola Perez, Jorge Hidalgo, Tomoko Ikeuchi, Teresa Greenwell-Wild, Blake M. Warner, Niki M. Moutsopoulos, Ilias Alevizos

×

MicroRNA-148a facilitates inflammatory dendritic cell differentiation and autoimmunity by targeting MAFB
Yao Meng, Jun Li, Zhizhong Ye, Zhihua Yin, Qing Sun, Zhuojun Liao, Guanhua Li, Jun Deng, Lu Liu, Yuqing Yu, Li Wu, Haibo Zhou, Nan Shen
Yao Meng, Jun Li, Zhizhong Ye, Zhihua Yin, Qing Sun, Zhuojun Liao, Guanhua Li, Jun Deng, Lu Liu, Yuqing Yu, Li Wu, Haibo Zhou, Nan Shen
View: Text | PDF

MicroRNA-148a facilitates inflammatory dendritic cell differentiation and autoimmunity by targeting MAFB

  • Text
  • PDF
Abstract

Monocyte-derived DCs (moDCs) have been implicated in the pathogenesis of autoimmunity, but the molecular pathways determining the differentiation potential of these cells remain unclear. Here, we report that microRNA-148a (miR-148a) serves as a critical regulator for moDC differentiation. First, miR-148a deficiency impaired the moDC development in vitro and in vivo. A mechanism study showed that MAFB, a transcription factor that hampers moDC differentiation, was a direct target of miR-148a. In addition, a promoter study identified that miR-148a could be transcriptionally induced by PU.1, which is crucial for moDC generation. miR-148a ablation eliminated the inhibition of PU.1 on MAFB. Furthermore, we found that miR-148a increased in monocytes from patients with psoriasis, and miR-148a deficiency or intradermal injection of antagomir-148a immensely alleviated the development of psoriasis-like symptoms in a psoriasis-like mouse model. Therefore, these results identify a pivotal role for the PU.1-miR-148a-MAFB circuit in moDC differentiation and suggest a potential therapeutic avenue for autoimmunity.

Authors

Yao Meng, Jun Li, Zhizhong Ye, Zhihua Yin, Qing Sun, Zhuojun Liao, Guanhua Li, Jun Deng, Lu Liu, Yuqing Yu, Li Wu, Haibo Zhou, Nan Shen

×

Pancreas tissue slices from organ donors enable in situ analysis of type 1 diabetes pathogenesis
Julia K. Panzer, Helmut Hiller, Christian M. Cohrs, Joana Almaça, Stephen J. Enos, Maria Beery, Sirlene Cechin, Denise M. Drotar, John R. Weitz, Jorge Santini, Mollie K. Huber, Mirza Muhammad Fahd Qadir, Ricardo L. Pastori, Juan Domínguez-Bendala, Edward A. Phelps, Mark A. Atkinson, Alberto Pugliese, Alejandro Caicedo, Irina Kusmartseva, Stephan Speier
Julia K. Panzer, Helmut Hiller, Christian M. Cohrs, Joana Almaça, Stephen J. Enos, Maria Beery, Sirlene Cechin, Denise M. Drotar, John R. Weitz, Jorge Santini, Mollie K. Huber, Mirza Muhammad Fahd Qadir, Ricardo L. Pastori, Juan Domínguez-Bendala, Edward A. Phelps, Mark A. Atkinson, Alberto Pugliese, Alejandro Caicedo, Irina Kusmartseva, Stephan Speier
View: Text | PDF

Pancreas tissue slices from organ donors enable in situ analysis of type 1 diabetes pathogenesis

  • Text
  • PDF
Abstract

In type 1 diabetes (T1D), autoimmune destruction of pancreatic β cells leads to insulin deficiency and loss of glycemic control. However, knowledge about human pancreas pathophysiology in T1D remains incomplete. To address this limitation, we established a pancreas tissue slice platform of donor organs with and without diabetes, facilitating the first live cell studies of human pancreas in T1D pathogenesis to our knowledge. We show that pancreas tissue slices from organ donors allow thorough assessment of processes critical for disease development, including insulin secretion, β cell physiology, endocrine cell morphology, and immune infiltration within the same donor organ. Using this approach, we compared detailed pathophysiological profiles for 4 pancreata from donors with T1D with 19 nondiabetic control donors. We demonstrate that β cell loss, β cell dysfunction, alterations of β cell physiology, and islet infiltration contributed differently to individual cases of T1D, allowing insight into pathophysiology and heterogeneity of T1D pathogenesis. Thus, our study demonstrates that organ donor pancreas tissue slices represent a promising and potentially novel approach in the search for successful prevention and reversal strategies of T1D.

Authors

Julia K. Panzer, Helmut Hiller, Christian M. Cohrs, Joana Almaça, Stephen J. Enos, Maria Beery, Sirlene Cechin, Denise M. Drotar, John R. Weitz, Jorge Santini, Mollie K. Huber, Mirza Muhammad Fahd Qadir, Ricardo L. Pastori, Juan Domínguez-Bendala, Edward A. Phelps, Mark A. Atkinson, Alberto Pugliese, Alejandro Caicedo, Irina Kusmartseva, Stephan Speier

×
  • ← Previous
  • 1
  • 2
  • …
  • 19
  • 20
  • 21
  • …
  • 31
  • 32
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts