Humoral immunity is critical for viral control, but the identity and mechanisms regulating human antiviral B cells are unclear. Here, we characterized human B cells expressing T-bet and analyzed their dynamics during viral infections. T-bet+ B cells demonstrated an activated phenotype, a distinct transcriptional profile, and were enriched for expression of the antiviral immunoglobulin isotypes IgG1 and IgG3. T-bet+ B cells expanded following yellow fever virus and vaccinia virus vaccinations and also during early acute HIV infection. Viremic HIV-infected individuals maintained a large T-bet+ B cell population during chronic infection that was associated with increased serum and cell-associated IgG1 and IgG3 expression. The HIV gp140–specific B cell response was dominated by T-bet–expressing memory B cells, and we observed a concomitant biasing of gp140-specific serum immunoglobulin to the IgG1 isotype. These findings suggest that T-bet induction promotes antiviral immunoglobulin isotype switching and development of a distinct T-bet+ B cell subset that is maintained by viremia and coordinates the HIV Env–specific humoral response.
James J. Knox, Marcus Buggert, Lela Kardava, Kelly E. Seaton, Michael A. Eller, David H. Canaday, Merlin L. Robb, Mario A. Ostrowski, Steven G. Deeks, Mark K. Slifka, Georgia D. Tomaras, Susan Moir, M. Anthony Moody, Michael R. Betts
HIV vaginal transmission accounts for the majority of newly acquired heterosexual infections. However, the mechanism by which HIV spreads from the initial site of viral entry at the mucosal surface of the female genital tract to establish a systemic infection of lymphoid and peripheral tissues is not known. Once the virus exits the mucosa it rapidly spreads to all tissues, leading to CD4+ T cell depletion and the establishment of a viral reservoir that cannot be eliminated with current treatments. Understanding the molecular and cellular requirements for viral dissemination from the genital tract is therefore of great importance, as it could reveal new strategies to lengthen the window of opportunity to target the virus at its entry site in the mucosa where it is the most vulnerable and thus prevent systemic infection. Using HIV vaginal infection of humanized mice as a model of heterosexual transmission, we demonstrate that blocking the ability of leukocytes to respond to chemoattractants prevented HIV from leaving the female genital tract. Furthermore, blocking lymphocyte egress from lymph nodes prevented viremia and infection of the gut. Leukocyte trafficking therefore plays a major role in viral dissemination, and targeting the chemoattractant molecules involved can prevent the establishment of a systemic infection.
Maud Deruaz, Thomas T. Murooka, Sophina Ji, Marc A. Gavin, Vladimir D. Vrbanac, Judy Lieberman, Andrew M. Tager, Thorsten R. Mempel, Andrew D. Luster
The conditioning regimen used as part of the Berlin patient’s hematopoietic cell transplant likely contributed to his eradication of HIV infection. We studied the impact of conditioning in simian-human immunodeficiency virus–infected (SHIV-infected) macaques suppressed by combination antiretroviral therapy (cART). The conditioning regimen resulted in a dramatic, but incomplete depletion of CD4+ and CD8+ T cells and CD20+ B cells, increased T cell activation and exhaustion, and a significant loss of SHIV-specific Abs. The disrupted T cell homeostasis and markers of microbial translocation positively correlated with an increased viral rebound after cART interruption. Quantitative viral outgrowth and Tat/rev–induced limiting dilution assays showed that the size of the latent SHIV reservoir did not correlate with viral rebound. These findings identify perturbations of the immune system as a mechanism for the failure of autologous transplantation to eradicate HIV. Thus, transplantation strategies may be improved by incorporating immune modulators to prevent disrupted homeostasis, and gene therapy to protect transplanted cells.
Christopher W. Peterson, Clarisse Benne, Patricia Polacino, Jasbir Kaur, Cristina E. McAllister, Abdelali Filali-Mouhim, Willi Obenza, Tiffany A. Pecor, Meei-Li Huang, Audrey Baldessari, Robert D. Murnane, Ann E. Woolfrey, Keith R. Jerome, Shiu-Lok Hu, Nichole R. Klatt, Stephen DeRosa, Rafick P. Sékaly, Hans-Peter Kiem
HIV-1 viremic controllers (VC) spontaneously control infection without antiretroviral treatment. Several studies indicate that IgG Abs from VCs induce enhanced responses from immune effector cells. Since signaling through Fc-γ receptors (FCGRs) modulate these Ab-driven responses, here we examine if enhanced FCGR activation is a common feature of IgG from VCs. Using an infected cell–based system, we observed that VC IgG stimulated greater FCGR2A and FCGR3A activation as compared with noncontrollers, independent of the magnitude of HIV-specific Ab binding or virus neutralization activities. Multivariate regression analysis showed that enhanced FCGR signaling was a significant predictor of VC status as compared with chronically infected patients (CIP) on highly active antiretroviral therapy (HAART). Unsupervised hierarchical clustering of patient IgG functions primarily grouped VC IgG profiles by enhanced FCGR2A, FCGR3A, or dual signaling activity. Our findings demonstrate that enhanced FCGR signaling is a common and significant predictive feature of VC IgG, with VCs displaying a distinct spectrum of FCGR activation profiles. Thus, profiling FCGR activation may provide a useful method for screening and distinguishing protective anti-HIV IgG responses in HIV-infected patients and in monitoring HIV vaccination regimens.
Raymond A. Alvarez, Ana M. Maestre, Kenneth Law, Natasha D. Durham, Maria Ines Barria, Akiko Ishii-Watabe, Minoru Tada, Manav Kapoor, Mathew T. Hotta, Gabriela Rodriguez-Caprio, Daniel S. Fierer, Ana Fernandez-Sesma, Viviana Simon, Benjamin K. Chen
Flow cytometry is utilized extensively for cellular analysis, but technical limitations have prevented its routine application for characterizing virus. The recent introduction of nanoscale fluorescence-activated cytometric cell sorting now allows analysis of individual virions. Here, we demonstrate staining and sorting of infectious HIV. Fluorescent antibodies specific for cellular molecules found on budding virions were used to label CCR5-tropic Bal HIV and CXCR4-tropic NL4.3 HIV Env-expressing pseudovirions made in THP-1 cells (monocyte/macrophage) and H9 cells (T cells), respectively. Using a flow cytometer, we resolved the stained virus beyond isotype staining and demonstrated purity and infectivity of sorted virus populations on cells with the appropriate coreceptors. We subsequently sorted infectious simian/human immunodeficiency virus from archived plasma. Recovery was approximately 0.5%, but virus present in plasma was already bound to viral-specific IgG generated in vivo, likely contributing to the low yield. Importantly, using two broadly neutralizing HIV antibodies, PG9 and VRC01, we also sorted virus from archived human plasma and analyzed the sorted populations genetically and by proteomics, identifying the quasispecies present. The ability to sort infectious HIV from clinically relevant samples provides material for detailed molecular, genetic, and proteomic analyses applicable to future design of vaccine antigens and potential development of personalized treatment regimens.
Thomas Musich, Jennifer C. Jones, Brandon F. Keele, Lisa M. Miller Jenkins, Thorsten Demberg, Thomas S. Uldrick, Robert Yarchoan, Marjorie Robert-Guroff
SIV DNA can be detected in lymphoid tissue–resident macrophages of chronically SIV-infected Asian macaques. These macrophages also contain evidence of recently phagocytosed SIV-infected CD4+ T cells. Here, we examine whether these macrophages contain replication-competent virus, whether viral DNA can be detected in tissue-resident macrophages from antiretroviral (ARV) therapy–treated animals and humans, and how the viral sequences amplified from macrophages and contemporaneous CD4+ T cells compare. In ARV-naive animals, we find that lymphoid tissue–resident macrophages contain replication-competent virus if they also contain viral DNA in ARV-naive Asian macaques. The genetic sequence of the virus within these macrophages is similar to those within CD4+ T cells from the same anatomic sites. In ARV-treated animals, we find that viral DNA can be amplified from lymphoid tissue–resident macrophages of SIV-infected Asian macaques that were treated with ARVs for at least 5 months, but we could not detect replication-competent virus from macrophages of animals treated with ARVs. Finally, we could not detect viral DNA in alveolar macrophages from HIV-infected individuals who received ARVs for 3 years and had undetectable viral loads. These data demonstrate that macrophages can contain replication-competent virus, but may not represent a significant reservoir for HIV in vivo.
Sarah R. DiNapoli, Alexandra M. Ortiz, Fan Wu, Kenta Matsuda, Homer L. Twigg III, Vanessa M. Hirsch, Kenneth Knox, Jason M. Brenchley
HIV-1–specific broadly neutralizing antibodies (bnAbs) typically develop in individuals with continuous high-level viral replication and increased immune activation, conditions that cannot be reproduced during prophylactic immunization. Understanding mechanisms supporting bnAb development in the absence of high-level viremia may be important for designing bnAb-inducing immunogens. Here, we show that the breadth of neutralizing antibody responses in HIV-1 controllers was associated with a relative enrichment of circulating CXCR5+CXCR3+PD-1lo CD4+ T cells. These CXCR3+PD-1lo Tfh-like cells were preferentially induced in vitro by functionally superior dendritic cells from controller neutralizers, and able to secrete IL-21 and support B cells. In addition, these CXCR3+PD-1lo Tfh-like cells contained higher proportions of stem cell–like memory T cells, and upon antigenic stimulation differentiated into PD-1hi Tfh-like cells in a Notch-dependent manner. Together, these data suggest that CXCR5+CXCR3+PD-1lo cells represent a dendritic cell–primed precursor cell population for PD-1hi Tfh-like cells that may contribute to the generation of bnAbs in the absence of high-level viremia.
Enrique Martin-Gayo, Jacqueline Cronin, Taylor Hickman, Zhengyu Ouyang, Madelene Lindqvist, Kellie E. Kolb, Julian Schulze zur Wiesch, Rafael Cubas, Filippos Porichis, Alex K. Shalek, Jan van Lunzen, Elias K. Haddad, Bruce D. Walker, Daniel E. Kaufmann, Mathias Lichterfeld, Xu G. Yu
HIV-1 persistence in latent reservoirs during antiretroviral therapy (ART) is the main obstacle to virus eradication. To date, there is no marker that adequately identifies latently infected CD4+ T cells in vivo. Using a well-established ex vivo model, we generated latently infected CD4+ T cells and identified interferon-induced transmembrane protein 1 (IFITM1), a transmembrane antiviral factor, as being overexpressed in latently infected cells. By targeting IFITM1, we showed the efficient and specific killing of a latently infected cell line and CD4+ T cells from ART-suppressed patients through antibody-dependent cytolysis. We hypothesize that IFITM1 could mark natural reservoirs, identifying an immune target for killing of latently infected cells. These novel insights could be explored to develop clinical therapeutic approaches to effectively eradicate HIV-1.
Rui André Saraiva Raposo, Miguel de Mulder Rougvie, Dominic Paquin-Proulx, Phillip M. Brailey, Vinicius D. Cabido, Paul M. Zdinak, Allison S. Thomas, Szu-han Huang, Greta A. Beckerle, Richard B. Jones, Douglas F. Nixon
IFN-ε is a unique type I IFN that is not induced by pattern recognition response elements. IFN-ε is constitutively expressed in mucosal tissues, including the female genital mucosa. Although the direct antiviral activity of IFN-ε was thought to be weak compared with IFN-α, IFN-ε controls
Carley Tasker, Selvakumar Subbian, Pan Gao, Jennifer Couret, Carly Levine, Saleena Ghanny, Patricia Soteropoulos, Xilin Zhao, Nathaniel Landau, Wuyuan Lu, Theresa L. Chang
The ALVAC prime/ALVAC + AIDSVAX B/E boost RV144 vaccine trial induced an estimated 31% efficacy in a low-risk cohort where HIV‑1 exposures were likely at mucosal surfaces. An immune correlates study demonstrated that antibodies targeting the V2 region and in a secondary analysis antibody-dependent cellular cytotoxicity (ADCC), in the presence of low envelope-specific (Env-specific) IgA, correlated with decreased risk of infection. Thus, understanding the B cell repertoires induced by this vaccine in systemic and mucosal compartments are key to understanding the potential protective mechanisms of this vaccine regimen. We immunized rhesus macaques with the ALVAC/AIDSVAX B/E gp120 vaccine regimen given in RV144, and then gave a boost 6 months later, after which the animals were necropsied. We isolated systemic and intestinal vaccine Env-specific memory B cells. Whereas Env-specific B cell clonal lineages were shared between spleen, draining inguinal, anterior pelvic, posterior pelvic, and periaortic lymph nodes, members of Env‑specific B cell clonal lineages were absent in the terminal ileum. Env‑specific antibodies were detectable in rectal fluids, suggesting that IgG antibodies present at mucosal sites were likely systemically produced and transported to intestinal mucosal sites.
Kan Luo, Hua-Xin Liao, Ruijun Zhang, David Easterhoff, Kevin Wiehe, Thaddeus C. Gurley, Lawrence C. Armand, Ashley A. Allen, Tarra A. Von Holle, Dawn J. Marshall, John F. Whitesides, Jamie Pritchett, Andrew Foulger, Giovanna Hernandez, Robert Parks, Krissey E. Lloyd, Christina Stolarchuk, Sheetal Sawant, Jessica Peel, Nicole L. Yates, Erika Dunford, Sabrina Arora, Amy Wang, Cindy M. Bowman, Laura L. Sutherland, Richard M. Scearce, Shi-Mao Xia, Mattia Bonsignori, Justin Pollara, R. Whitney Edwards, Sampa Santra, Norman L. Letvin, James Tartaglia, Donald Francis, Faruk Sinangil, Carter Lee, Jaranit Kaewkungwal, Sorachai Nitayaphan, Punnee Pitisuttithum, Supachai Rerks-ngarm, Nelson L. Michael, Jerome H. Kim, S. Munir Alam, Nathan A. Vandergrift, Guido Ferrari, David C. Montefiori, Georgia D. Tomaras, Barton F. Haynes, M. Anthony Moody
No posts were found with this tag.