Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

RIPK3 mediates pathogenesis of experimental ventilator-induced lung injury
Ilias I. Siempos, … , Kiichi Nakahira, Augustine M.K. Choi
Ilias I. Siempos, … , Kiichi Nakahira, Augustine M.K. Choi
Published May 3, 2018
Citation Information: JCI Insight. 2018;3(9):e97102. https://doi.org/10.1172/jci.insight.97102.
View: Text | PDF
Research Article Pulmonology

RIPK3 mediates pathogenesis of experimental ventilator-induced lung injury

  • Text
  • PDF
Abstract

In patients requiring ventilator support, mechanical ventilation (MV) may induce acute lung injury (ventilator-induced lung injury [VILI]). VILI is associated with substantial morbidity and mortality in mechanically ventilated patients with and without acute respiratory distress syndrome. At the cellular level, VILI induces necrotic cell death. However, the contribution of necroptosis, a programmed form of necrotic cell death regulated by receptor-interacting protein-3 kinase (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL), to the development of VILI remains unexplored. Here, we show that plasma levels of RIPK3, but not MLKL, were higher in patients with MV (i.e., those prone to VILI) than in patients without MV (i.e., those less likely to have VILI) in two large intensive care unit cohorts. In mice, RIPK3 deficiency, but not MLKL deficiency, ameliorated VILI. In both humans and mice, VILI was associated with impaired fatty acid oxidation (FAO), but in mice this association was not observed under conditions of RIPK3 deficiency. These findings suggest that FAO-dependent RIPK3 mediates pathogenesis of acute lung injury.

Authors

Ilias I. Siempos, Kevin C. Ma, Mitsuru Imamura, Rebecca M. Baron, Laura E. Fredenburgh, Jin-Won Huh, Jong-Seok Moon, Eli J. Finkelsztein, Daniel S. Jones, Michael Torres Lizardi, Edward J. Schenck, Stefan W. Ryter, Kiichi Nakahira, Augustine M.K. Choi

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts