Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Siglec-G represses DAMP-mediated effects on T cells
Tomomi Toubai, Corinne Rossi, Katherine Oravecz-Wilson, Cynthia Zajac, Chen Liu, Thomas Braun, Hideaki Fujiwara, Julia Wu, Yaping Sun, Stuart Brabbs, Hiroya Tamaki, John Magenau, Pang Zheng, Yang Liu, Pavan Reddy
Tomomi Toubai, Corinne Rossi, Katherine Oravecz-Wilson, Cynthia Zajac, Chen Liu, Thomas Braun, Hideaki Fujiwara, Julia Wu, Yaping Sun, Stuart Brabbs, Hiroya Tamaki, John Magenau, Pang Zheng, Yang Liu, Pavan Reddy
View: Text | PDF
Research Article Immunology Transplantation

Siglec-G represses DAMP-mediated effects on T cells

  • Text
  • PDF
Abstract

The role of negative regulators or suppressors of the damage-associated molecular pattern–mediated (DAMP-mediated) stimulation of innate immune responses is being increasingly appreciated. However, the presence and function of suppressors of DAMP-mediated effects on T cells, and whether they can be targeted to mitigate T cell–dependent immunopathology remain unknown. Sialic acid–binding immunoglobulin-like lectin G (Siglec-G) is a negative regulator of DAMP-mediated responses in innate immune cells, but its T cell–autonomous role is unknown. Utilizing loss-of-function–based (genetic knockout) and gain-of-function–based (agonist) approaches, we demonstrate that in the presence of certain DAMPs, Siglec-G suppressed in vitro and in vivo T cell responses. We also demonstrate that its T cell–autonomous role is critical for modulating the severity of the T cell–mediated immunopathology, graft-versus-host disease (GVHD). Enhancing the Siglec-G signaling in donor T cells with its agonist, a CD24Fc fusion protein, ameliorated GVHD while preserving sufficient graft-versus-tumor (GVT) effects in vivo. Collectively, these data demonstrate that Siglec-G is a potentially novel negative regulator of T cell responses, which can be targeted to mitigate GVHD.

Authors

Tomomi Toubai, Corinne Rossi, Katherine Oravecz-Wilson, Cynthia Zajac, Chen Liu, Thomas Braun, Hideaki Fujiwara, Julia Wu, Yaping Sun, Stuart Brabbs, Hiroya Tamaki, John Magenau, Pang Zheng, Yang Liu, Pavan Reddy

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts