Hereditary angioedema is an autosomal dominant disorder caused by defects in C1-esterase inhibitor (C1-INH), resulting in poorly controlled activation of the kallikrein-kinin system and bradykinin overproduction. C1-INH is a heavily glycosylated protein in the serine protease inhibitor (SERPIN) family, yet the role of these glycosylation sites remains unclear. To elucidate the functional impact of N-glycosylation in the SERPIN domain of C1-INH, we engineered 4 sets consisting of 26 variants at or near the N-linked sequon (NXS/T). Among these, 6 are reported in patients with hereditary angioedema and 5 are known C1-INH variants without accessible clinical histories. We systematically evaluated their expression, structure, and functional activity with C1s̄, FXIIa, and kallikrein. Our findings showed that of the 11 reported variants, 7 were deleterious. Deleting N at the 3 naturally occurring N-linked sequons (N238, N253, and N352) resulted in pathologic consequences. Altering these sites by substituting N with A disrupted N-linked sugar attachment, but preserved protein expression and function. Furthermore, an additional N-linked sugar generated at N272 impaired C1-INH function. These findings highlight the importance of N-linked sequons in modulating the expression and function of C1-INH. Insights gained from identifying the pathological consequences of N-glycan variants should assist in defining more tailored therapy.
Zhen Ren, John Bao, Shuangxia Zhao, Nicola Pozzi, H. James Wedner, John P. Atkinson
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.