Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

KRASG12D drives immunosuppression in lung adenocarcinoma through paracrine signaling
Emily L. Lasse-Opsahl, Ivana Barravecchia, Elyse McLintock, Jennifer M. Lee, Sarah F. Ferris, Carlos E. Espinoza, Rachael Hinshaw, Sophia Cavanaugh, Marzia Robotti, Lily Rober, Kristee Brown, Kristena Y. Abdelmalak, Craig J. Galban, Timothy L. Frankel, Yaqing Zhang, Marina Pasca di Magliano, Stefanie Galban
Emily L. Lasse-Opsahl, Ivana Barravecchia, Elyse McLintock, Jennifer M. Lee, Sarah F. Ferris, Carlos E. Espinoza, Rachael Hinshaw, Sophia Cavanaugh, Marzia Robotti, Lily Rober, Kristee Brown, Kristena Y. Abdelmalak, Craig J. Galban, Timothy L. Frankel, Yaqing Zhang, Marina Pasca di Magliano, Stefanie Galban
View: Text | PDF
Research Article Oncology

KRASG12D drives immunosuppression in lung adenocarcinoma through paracrine signaling

  • Text
  • PDF
Abstract

Lung cancer is the leading cause of cancer deaths in the United States. New targeted therapies against the once-deemed undruggable oncogenic KRAS are changing current therapeutic paradigms. However, resistance to targeted KRAS inhibitors almost inevitably occurs; resistance can be driven by tumor cell–intrinsic changes or by changes in the microenvironment. Here, we utilized a genetically engineered mouse model of KRASG12D-driven lung cancer that allows for inducible and reversible expression of the oncogene: activation of oncogenic KRASG12D induces tumor growth; conversely, inactivation of KRASG12D causes tumor regression. We showed that in addition to regulating cancer cell growth and survival, oncogenic KRAS regulated the transcriptional status of cancer-associated fibroblasts and macrophages in this model. Utilizing ex vivo approaches, we showed that secreted factors from cancer cells induced the expression of multiple cytokines in lung fibroblasts, and in turn drove expression of immunosuppressive factors, such as arginase 1, in macrophages. In summary, fibroblasts emerged as a key source of immune regulatory signals, and a potential therapeutic target for improving the efficacy of KRAS inhibitors in lung cancer.

Authors

Emily L. Lasse-Opsahl, Ivana Barravecchia, Elyse McLintock, Jennifer M. Lee, Sarah F. Ferris, Carlos E. Espinoza, Rachael Hinshaw, Sophia Cavanaugh, Marzia Robotti, Lily Rober, Kristee Brown, Kristena Y. Abdelmalak, Craig J. Galban, Timothy L. Frankel, Yaqing Zhang, Marina Pasca di Magliano, Stefanie Galban

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts