Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

CD4+ T helper 2 cell–macrophage crosstalk induces IL-24–mediated breast cancer suppression
Bo Wang, Yun Xia, Can Zhou, Yuhan Zeng, Heehwa G. Son, Shadmehr Demehri
Bo Wang, Yun Xia, Can Zhou, Yuhan Zeng, Heehwa G. Son, Shadmehr Demehri
View: Text | PDF
Research Article Immunology Oncology

CD4+ T helper 2 cell–macrophage crosstalk induces IL-24–mediated breast cancer suppression

  • Text
  • PDF
Abstract

CD4+ T cells contribute to antitumor immunity and are implicated in the efficacy of cancer immunotherapies. In particular, CD4+ T helper 2 (Th2) cells were recently found to block spontaneous breast carcinogenesis. However, the antitumor potential of Th2 cells in targeting established breast cancer remains uncertain. Herein, we demonstrate that Th2 cells induced by the topical calcipotriol/thymic stromal lymphopoietin cytokine axis suppressed the growth of established mammary tumors in mice. Interleukin-24 (IL-24), an anticancer cytokine, was highly upregulated in macrophages infiltrating calcipotriol-treated mammary tumors. Macrophages expressed IL-24 in response to IL-4 signaling in combination with Toll-like receptor 4 (TLR4) agonists (e.g., HMGB1) in vitro. Calcipotriol treatment significantly increased HMGB1 release by tumor cells in vivo. CD4+ T cell depletion reduced HMGB1 and IL-24 expression, reversing calcipotriol’s therapeutic efficacy. Macrophage depletion and TLR4 inhibition also reduced the therapeutic efficacy of calcipotriol. Importantly, calcipotriol treatment failed to control mammary tumors lacking the IL-24 receptor on tumor cells. Collectively, our findings reveal that Th2 cell–macrophage crosstalk leads to IL-24–mediated tumor cell death, highlighting a promising therapeutic strategy to tackle breast cancer.

Authors

Bo Wang, Yun Xia, Can Zhou, Yuhan Zeng, Heehwa G. Son, Shadmehr Demehri

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts