Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Ginger intake suppresses neutrophil extracellular trap formation in autoimmune mice and healthy humans
Ramadan A. Ali, … , Jason S. Knight, M. Kristen Demoruelle
Ramadan A. Ali, … , Jason S. Knight, M. Kristen Demoruelle
Published September 22, 2023
Citation Information: JCI Insight. 2023;8(18):e172011. https://doi.org/10.1172/jci.insight.172011.
View: Text | PDF
Research Article Immunology

Ginger intake suppresses neutrophil extracellular trap formation in autoimmune mice and healthy humans

  • Text
  • PDF
Abstract

We previously reported that treatment of mice with 6-gingerol, the most abundant phytochemical in ginger root, leads to phosphodiesterase inhibition that counteracts neutrophil hyperactivity in models of antiphospholipid syndrome (APS) and lupus. Here, we explored the extent to which oral intake of a whole-ginger extract would similarly impact neutrophils in both autoimmune mice and healthy humans. In vitro, a solubilized ginger extract was able to attenuate neutrophil extracellular trap formation (NETosis) by human neutrophils through a mechanism that was dependent upon the cyclic AMP–dependent kinase, protein kinase A. When mice with features of either APS or lupus were administered a ginger extract orally, they demonstrated reduced circulating NETs, as well as the tempering of other disease outcomes, such as large-vein thrombosis (APS) and autoantibody production (lupus). In a pilot clinical trial, which was validated in a second cohort, daily intake of a ginger supplement for 7 days by healthy volunteers boosted neutrophil cAMP, inhibited NETosis in response to disease-relevant stimuli, and reduced circulating plasma NET levels. In summary, this work demonstrates that ginger intake restrains neutrophil hyperactivity in autoimmune mouse models and that ginger consumption by healthy individuals makes their neutrophils more resistant to NETosis.

Authors

Ramadan A. Ali, Valerie C. Minarchick, Miela Zahavi, Christine E. Rysenga, Kristin A. Sturm, Claire K. Hoy, Cyrus Sarosh, Jason S. Knight, M. Kristen Demoruelle

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts