Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Linking adipose tissue eosinophils, IL-4, and leptin in human obesity and insulin resistance
James D. Hernandez, Ting Li, Hamza Ghannam, Cassandra M. Rau, Mia Y. Masuda, James A. Madura II, Elizabeth A. Jacobsen, Eleanna De Filippis
James D. Hernandez, Ting Li, Hamza Ghannam, Cassandra M. Rau, Mia Y. Masuda, James A. Madura II, Elizabeth A. Jacobsen, Eleanna De Filippis
View: Text | PDF
Clinical Research and Public Health Inflammation Metabolism

Linking adipose tissue eosinophils, IL-4, and leptin in human obesity and insulin resistance

  • Text
  • PDF
Abstract

BACKGROUND Obesity is a multifactorial disease with adverse health implications including insulin resistance (IR). In patients with obesity, the presence of high circulating levels of leptin, deemed hyperleptinemia, is associated with IR. Recent data in mice with diet-induced obesity (DIO) show that a partial reduction in leptin levels improves IR. Additional animal studies demonstrate that IL-4 decreases leptin levels. In rodents, resident adipose tissue eosinophils (AT-EOS) are the main source of IL-4 and are instrumental in maintaining metabolic homeostasis. A marked reduction in AT-EOS content is observed in animal models of DIO. These observations have not been explored in humans.METHODS We analyzed AT from individuals with obesity and age-matched lean counterparts for AT-EOS content, IL-4, circulating leptin levels, and measures of IR.RESULTS Our results show that individuals with obesity (n = 15) had a significant reduction in AT-EOS content (P < 0.01), decreased AT–IL-4 gene expression (P = 0.02), and decreased IL-4 plasma levels (P < 0.05) in addition to expected IR (P < 0.001) and hyperleptinemia (P < 0.01) compared with lean subjects (n = 15). AT-EOS content inversely correlated with BMI (P = 0.002) and IR (P = 0.005). Ex vivo AT explants and in vitro cell culture of primary human mature adipocytes exposed to either IL-4 or EOS conditioned media produced less leptin (P < 0.05).CONCLUSION Our results suggest that IL-4 acts as a link between EOS, AT, and leptin production. Future studies exploring this interaction may identify an avenue for the treatment of obesity and its complications through amelioration of hyperleptinemia.TRIAL REGISTRATION Clinicaltrials.gov NCT02378077 & NCT04234295.

Authors

James D. Hernandez, Ting Li, Hamza Ghannam, Cassandra M. Rau, Mia Y. Masuda, James A. Madura II, Elizabeth A. Jacobsen, Eleanna De Filippis

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts