Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

MYC-driven increases in mitochondrial DNA copy number occur early and persist throughout prostatic cancer progression
Jiayu Chen, Qizhi Zheng, Jessica L. Hicks, Levent Trabzonlu, Busra Ozbek, Tracy Jones, Ajay M. Vaghasia, Tatianna C. Larman, Rulin Wang, Mark C. Markowski, Sam R. Denmeade, Kenneth J. Pienta, Ralph H. Hruban, Emmanuel S. Antonarakis, Anuj Gupta, Chi V. Dang, Srinivasan Yegnasubramanian, Angelo M. De Marzo
Jiayu Chen, Qizhi Zheng, Jessica L. Hicks, Levent Trabzonlu, Busra Ozbek, Tracy Jones, Ajay M. Vaghasia, Tatianna C. Larman, Rulin Wang, Mark C. Markowski, Sam R. Denmeade, Kenneth J. Pienta, Ralph H. Hruban, Emmanuel S. Antonarakis, Anuj Gupta, Chi V. Dang, Srinivasan Yegnasubramanian, Angelo M. De Marzo
View: Text | PDF
Research Article Metabolism Oncology

MYC-driven increases in mitochondrial DNA copy number occur early and persist throughout prostatic cancer progression

  • Text
  • PDF
Abstract

Increased mitochondrial function may render some cancers vulnerable to mitochondrial inhibitors. Since mitochondrial function is regulated partly by mitochondrial DNA copy number (mtDNAcn), accurate measurements of mtDNAcn could help reveal which cancers are driven by increased mitochondrial function and may be candidates for mitochondrial inhibition. However, prior studies have employed bulk macrodissections that fail to account for cell type–specific or tumor cell heterogeneity in mtDNAcn. These studies have often produced unclear results, particularly in prostate cancer. Herein, we developed a multiplex in situ method to spatially quantify cell type–specific mtDNAcn. We show that mtDNAcn is increased in luminal cells of high-grade prostatic intraepithelial neoplasia (HGPIN), is increased in prostatic adenocarcinomas (PCa), and is further elevated in metastatic castration-resistant prostate cancer. Increased PCa mtDNAcn was validated by 2 orthogonal methods and is accompanied by increases in mtRNAs and enzymatic activity. Mechanistically, MYC inhibition in prostate cancer cells decreases mtDNA replication and expression of several mtDNA replication genes, and MYC activation in the mouse prostate leads to increased mtDNA levels in the neoplastic prostate cells. Our in situ approach also revealed elevated mtDNAcn in precancerous lesions of the pancreas and colon/rectum, demonstrating generalization across cancer types using clinical tissue samples.

Authors

Jiayu Chen, Qizhi Zheng, Jessica L. Hicks, Levent Trabzonlu, Busra Ozbek, Tracy Jones, Ajay M. Vaghasia, Tatianna C. Larman, Rulin Wang, Mark C. Markowski, Sam R. Denmeade, Kenneth J. Pienta, Ralph H. Hruban, Emmanuel S. Antonarakis, Anuj Gupta, Chi V. Dang, Srinivasan Yegnasubramanian, Angelo M. De Marzo

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts