Dyslipidemia in obesity results from excessive production and impaired clearance of triglyceride-rich (TG-rich) lipoproteins, which are particularly pronounced in the postprandial state. Here, we investigated the impact of Roux-en-Y gastric bypass (RYGB) surgery on postprandial VLDL1 and VLDL2 apoB and TG kinetics and their relationship with insulin-responsiveness indices. Morbidly obese patients without diabetes who were scheduled for RYGB surgery (n = 24) underwent a lipoprotein kinetics study during a mixed-meal test and a hyperinsulinemic-euglycemic clamp study before the surgery and 1 year later. A physiologically based computational model was developed to investigate the impact of RYGB surgery and plasma insulin on postprandial VLDL kinetics. After the surgery, VLDL1 apoB and TG production rates were significantly decreased, whereas VLDL2 apoB and TG production rates remained unchanged. The TG catabolic rate was increased in both VLDL1 and VLDL2 fractions, but only the VLDL2 apoB catabolic rate tended to increase. Furthermore, postsurgery VLDL1 apoB and TG production rates, but not those of VLDL2, were positively correlated with insulin resistance. Insulin-mediated stimulation of peripheral lipoprotein lipolysis was also improved after the surgery. In summary, RYGB resulted in reduced hepatic VLDL1 production that correlated with reduced insulin resistance, elevated VLDL2 clearance, and improved insulin sensitivity in lipoprotein lipolysis pathways.
Vehpi Yildirim, Kasper W. ter Horst, Pim W. Gilijamse, Dewi van Harskamp, Henk Schierbeek, Hans Jansen, Alinda W.M. Schimmel, Max Nieuwdorp, Albert K. Groen, Mireille J. Serlie, Natal A.W. van Riel, Geesje M. Dallinga-Thie
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.