Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

A brief morning rest period benefits cardiac repair in pressure overload hypertrophy and postmyocardial infarction
Cristine J. Reitz, … , W. Glen Pyle, Tami A. Martino
Cristine J. Reitz, … , W. Glen Pyle, Tami A. Martino
Published October 18, 2022
Citation Information: JCI Insight. 2022;7(22):e164700. https://doi.org/10.1172/jci.insight.164700.
View: Text | PDF
Research Article Cardiology

A brief morning rest period benefits cardiac repair in pressure overload hypertrophy and postmyocardial infarction

  • Text
  • PDF
Abstract

Rest has long been considered beneficial to patient healing; however, remarkably, there are no evidence-based experimental models determining how it benefits disease outcomes. Here, we created an experimental rest model in mice that briefly extends the morning rest period. We found in 2 major cardiovascular disease conditions (cardiac hypertrophy, myocardial infarction) that imposing a short, extended period of morning rest each day limited cardiac remodeling compared with controls. Mechanistically, rest mitigates autonomic-mediated hemodynamic stress on the cardiovascular system, relaxes myofilament contractility, and attenuates cardiac remodeling genes, consistent with the benefits on cardiac structure and function. These same rest-responsive gene pathways underlie the pathophysiology of many major human cardiovascular conditions, as demonstrated by interrogating open-source transcriptomic data; thus, patients with other conditions may also benefit from a morning rest period in a similar manner. Our findings implicate rest as a key driver of physiology, creating a potentially new field — as broad and important as diet, sleep, or exercise — and provide a strong rationale for investigation of rest-based therapy for major clinical diseases.

Authors

Cristine J. Reitz, Mina Rasouli, Faisal J. Alibhai, Tarak N. Khatua, W. Glen Pyle, Tami A. Martino

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts