Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Ox40-Cre–mediated deletion of BRD4 reveals an unexpected phenotype of hair follicle stem cells in alopecia
Mou Wen, … , Rafik M. Ghobrial, Xian C. Li
Mou Wen, … , Rafik M. Ghobrial, Xian C. Li
Published October 18, 2022
Citation Information: JCI Insight. 2022;7(23):e164534. https://doi.org/10.1172/jci.insight.164534.
View: Text | PDF
Research Article Immunology

Ox40-Cre–mediated deletion of BRD4 reveals an unexpected phenotype of hair follicle stem cells in alopecia

  • Text
  • PDF
Abstract

BRD4 is a bromodomain extraterminal domain family member and functions primarily as a chromatin reader regulating genes involved in cell-fate decisions. Here, we bred Brd4fl/fl Ox40-Cre mice in which Brd4 was conditionally deleted in OX40-expressing cells to examine the role of BRD4 in regulating immune responses. We found that the Brd4fl/fl Ox40-Cre mice developed profound alopecia and dermatitis, while other organs and tissues were not affected. Surprisingly, lineage-tracing experiments using the Rosa26fl/fl-Yfp mice identified a subset of hair follicle stem cells (HFSCs) that constitutively express OX40, and deletion of Brd4 specifically in such HFSCs resulted in cell death and a complete loss of skin hair growth. We also found that death of HFSCs triggered massive activation of the intradermal γδ T cells, which induced epidermal hyperplasia and dermatitis by producing the inflammatory cytokine IL-17. Interestingly, deletion of Brd4 in Foxp3+ Tregs, which also constitutively express OX40, compromised their suppressive functions, and this, in turn, contributed to the enhanced activation of γδ T cells, as well as the severity of dermatitis and hair follicle destruction. Thus, our data demonstrate an unexpected role of BRD4 in regulating skin follicle stem cells and skin inflammation.

Authors

Mou Wen, Yuanlin Ying, Xiang Xiao, Preston R. Arnold, Guangchuan Wang, Xiufeng Chu, Rafik M. Ghobrial, Xian C. Li

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts