Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

A human STAT3 gain-of-function variant confers T cell dysregulation without predominant Treg dysfunction in mice
Erica G. Schmitt, Kelsey A. Toth, Samuel I. Risma, Ana Kolicheski, Nermina Saucier, Rafael J. Feliciano Berríos, Zev J. Greenberg, Jennifer W. Leiding, Jack J. Bleesing, Akaluck Thatayatikom, Laura G. Schuettpelz, John R. Edwards, Tiphanie P. Vogel, Megan A. Cooper
Erica G. Schmitt, Kelsey A. Toth, Samuel I. Risma, Ana Kolicheski, Nermina Saucier, Rafael J. Feliciano Berríos, Zev J. Greenberg, Jennifer W. Leiding, Jack J. Bleesing, Akaluck Thatayatikom, Laura G. Schuettpelz, John R. Edwards, Tiphanie P. Vogel, Megan A. Cooper
View: Text | PDF
Research Article Immunology

A human STAT3 gain-of-function variant confers T cell dysregulation without predominant Treg dysfunction in mice

  • Text
  • PDF
Abstract

Primary immune regulatory disorders (PIRD) represent a group of disorders characterized by immune dysregulation, presenting with a wide range of clinical disease, including autoimmunity, autoinflammation, or lymphoproliferation. Autosomal dominant germline gain-of-function (GOF) variants in STAT3 result in a PIRD with a broad clinical spectrum. Studies in patients have documented a decreased frequency of FOXP3+ Tregs and an increased frequency of Th17 cells in some patients with active disease. However, the mechanisms of disease pathogenesis in STAT3 GOF syndrome remain largely unknown, and treatment is challenging. We developed a knock-in mouse model harboring a de novo pathogenic human STAT3 variant (p.G421R) and found these mice developed T cell dysregulation, lymphoproliferation, and CD4+ Th1 cell skewing. Surprisingly, Treg numbers, phenotype, and function remained largely intact; however, mice had a selective deficiency in the generation of iTregs. In parallel, we performed single-cell RNA-Seq on T cells from STAT3 GOF patients. We demonstrate only minor changes in the Treg transcriptional signature and an expanded, effector CD8+ T cell population. Together, these findings suggest that Tregs are not the primary driver of disease and highlight the importance of preclinical models in the study of disease mechanisms in rare PIRD.

Authors

Erica G. Schmitt, Kelsey A. Toth, Samuel I. Risma, Ana Kolicheski, Nermina Saucier, Rafael J. Feliciano Berríos, Zev J. Greenberg, Jennifer W. Leiding, Jack J. Bleesing, Akaluck Thatayatikom, Laura G. Schuettpelz, John R. Edwards, Tiphanie P. Vogel, Megan A. Cooper

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts