Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Distinct stage-specific transcriptional states of B cells derived from human tonsillar tissue
Diego A. Espinoza, Carole Le Coz, Emylette Cruz Cabrera, Neil Romberg, Amit Bar-Or, Rui Li
Diego A. Espinoza, Carole Le Coz, Emylette Cruz Cabrera, Neil Romberg, Amit Bar-Or, Rui Li
View: Text | PDF
Resource and Technical Advance Cell biology Immunology

Distinct stage-specific transcriptional states of B cells derived from human tonsillar tissue

  • Text
  • PDF
Abstract

B cells within secondary lymphoid tissues encompass a diversity of activation states and multiple maturation processes that reflect antigen recognition and transition through the germinal center (GC) reaction, in which mature B cells differentiate into memory and antibody-secreting cells (ASCs). Here, utilizing single-cell RNA-seq, we identify a range of distinct activation and maturation states of tonsil-derived B cells. In particular, we identify what we believe is a previously uncharacterized CCL4/CCL3 chemokine–expressing B cell population with an expression pattern consistent with B cell receptor/CD40 activation. Furthermore, we present a computational method that leverages regulatory network inference and pseudotemporal modeling to identify upstream transcription factor modulation along a GC-to-ASC axis of transcriptional maturation. Our data set provides valuable insight into diverse B cell functional profiles and will be a useful resource for further studies into the B cell immune compartment.

Authors

Diego A. Espinoza, Carole Le Coz, Emylette Cruz Cabrera, Neil Romberg, Amit Bar-Or, Rui Li

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts