Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Targeting TNF-α–producing macrophages activates antitumor immunity in pancreatic cancer via IL-33 signaling
Ajay Dixit, … , Rolf A. Brekken, Paolo P. Provenzano
Ajay Dixit, … , Rolf A. Brekken, Paolo P. Provenzano
Published October 18, 2022
Citation Information: JCI Insight. 2022;7(22):e153242. https://doi.org/10.1172/jci.insight.153242.
View: Text | PDF
Research Article Oncology

Targeting TNF-α–producing macrophages activates antitumor immunity in pancreatic cancer via IL-33 signaling

  • Text
  • PDF
Abstract

Pancreatic ductal adenocarcinoma (PDA) remains resistant to immune therapies, largely owing to robustly fibrotic and immunosuppressive tumor microenvironments. It has been postulated that excessive accumulation of immunosuppressive myeloid cells influences immunotherapy resistance, and recent studies targeting macrophages in combination with checkpoint blockade have demonstrated promising preclinical results. Yet our understanding of tumor-associated macrophage (TAM) function, complexity, and diversity in PDA remains limited. Our analysis reveals significant macrophage heterogeneity, with bone marrow–derived monocytes serving as the primary source for immunosuppressive TAMs. These cells also serve as a primary source of TNF-α, which suppresses expression of the alarmin IL-33 in carcinoma cells. Deletion of Ccr2 in genetically engineered mice decreased monocyte recruitment, resulting in profoundly decreased TNF-α and increased IL-33 expression, decreased metastasis, and increased survival. Moreover, intervention studies targeting CCR2 with a new orthosteric inhibitor (CCX598) rendered PDA susceptible to checkpoint blockade, resulting in reduced metastatic burden and increased survival. Our data indicate that this shift in antitumor immunity is influenced by increased levels of IL-33, which increases dendritic cell and cytotoxic T cell activity. These data demonstrate that interventions to disrupt infiltration of immunosuppressive macrophages, or their signaling, have the potential to overcome barriers to effective immunotherapeutics for PDA.

Authors

Ajay Dixit, Aaron Sarver, Jon Zettervall, Huocong Huang, Kexin Zheng, Rolf A. Brekken, Paolo P. Provenzano

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts