Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Metabolites enhance innate resistance to human Mycobacterium tuberculosis infection
Deepak Tripathi, … , Vijaya Lakshmi Valluri, Ramakrishna Vankayalapati
Deepak Tripathi, … , Vijaya Lakshmi Valluri, Ramakrishna Vankayalapati
Published November 22, 2022
Citation Information: JCI Insight. 2022;7(22):e152357. https://doi.org/10.1172/jci.insight.152357.
View: Text | PDF
Research Article Immunology

Metabolites enhance innate resistance to human Mycobacterium tuberculosis infection

  • Text
  • PDF
Abstract

To determine the mechanisms that mediate resistance to Mycobacterium tuberculosis (M. tuberculosis) infection in household contacts (HHCs) of patients with tuberculosis (TB), we followed 452 latent TB infection–negative (LTBI–) HHCs for 2 years. Those who remained LTBI– throughout the study were identified as nonconverters. At baseline, nonconverters had a higher percentage of CD14+ and CD3–CD56+CD27+CCR7+ memory-like natural killer (NK) cells. Using a whole-transcriptome and metabolomic approach, we identified deoxycorticosterone acetate as a metabolite with elevated concentrations in the plasma of nonconverters, and further studies showed that this metabolite enhanced glycolytic ATP flux in macrophages and restricted M. tuberculosis growth by enhancing antimicrobial peptide production through the expression of the surface receptor sialic acid binding Ig-like lectin–14. Another metabolite, 4-hydroxypyridine, from the plasma of nonconverters significantly enhanced the expansion of memory-like NK cells. Our findings demonstrate that increased levels of specific metabolites can regulate innate resistance against M. tuberculosis infection in HHCs of patients with TB who never develop LTBI or active TB.

Authors

Deepak Tripathi, Kamakshi Prudhula Devalraju, Venkata Sanjeev Kumar Neela, Tanmoy Mukherjee, Padmaja Paidipally, Rajesh Kumar Radhakrishnan, Igor Dozmorov, Abhinav Vankayalapati, Mohammad Soheb Ansari, Varalakshmi Mallidi, Anvesh Kumar Bogam, Karan P. Singh, Buka Samten, Vijaya Lakshmi Valluri, Ramakrishna Vankayalapati

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts