Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Targeting ESR1 mutation–induced transcriptional addiction in breast cancer with BET inhibition
Sm N. Udden, … , Cheng-Ming Chiang, Prasanna G. Alluri
Sm N. Udden, … , Cheng-Ming Chiang, Prasanna G. Alluri
Published July 26, 2022
Citation Information: JCI Insight. 2022;7(17):e151851. https://doi.org/10.1172/jci.insight.151851.
View: Text | PDF
Research Article Oncology

Targeting ESR1 mutation–induced transcriptional addiction in breast cancer with BET inhibition

  • Text
  • PDF
Abstract

Acquired mutations in the ligand-binding domain (LBD) of the gene encoding estrogen receptor α (ESR1) are common mechanisms of endocrine therapy resistance in patients with metastatic ER+ breast cancer. The ESR1 Y537S mutation, in particular, is associated with development of resistance to most endocrine therapies used to treat breast cancer. Employing a high-throughput screen of nearly 1,200 Federal Drug Administration–approved (FDA-approved) drugs, we show that OTX015, a bromodomain and extraterminal domain (BET) inhibitor, is one of the top suppressors of ESR1 mutant cell growth. OTX015 was more efficacious than fulvestrant, a selective ER degrader, in inhibiting ESR1 mutant xenograft growth. When combined with abemaciclib, a CDK4/6 inhibitor, OTX015 induced more potent tumor regression than current standard-of-care treatment of abemaciclib + fulvestrant. OTX015 has preferential activity against Y537S mutant breast cancer cells and blocks their clonal selection in competition studies with WT cells. Thus, BET inhibition has the potential to both prevent and overcome ESR1 mutant–induced endocrine therapy resistance in breast cancer.

Authors

Sm N. Udden, Qian Wang, Sunil Kumar, Venkat S. Malladi, Shwu-Yuan Wu, Shuguang Wei, Bruce A. Posner, Sophie Geboers, Noelle S. Williams, Yulun Liu, Jayesh K. Sharma, Ram S. Mani, Srinivas Malladi, Karla Parra, Mia Hofstad, Ganesh V. Raj, Jose M. Larios, Reshma Jagsi, Max S. Wicha, Ben Ho Park, Gaorav P. Gupta, Arul M. Chinnaiyan, Cheng-Ming Chiang, Prasanna G. Alluri

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts