Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Hypomorphic ASGR1 modulates lipid homeostasis via INSIG1-mediated SREBP signaling suppression
Yingying Xu, Jiawang Tao, Xiaorui Yu, Yuhang Wu, Yan Chen, Kai You, Jiaye Zhang, Anteneh Getachew, Tingcai Pan, Yuanqi Zhuang, Fang Yuan, Fan Yang, Xianhua Lin, Yin-xiong Li
Yingying Xu, Jiawang Tao, Xiaorui Yu, Yuhang Wu, Yan Chen, Kai You, Jiaye Zhang, Anteneh Getachew, Tingcai Pan, Yuanqi Zhuang, Fang Yuan, Fan Yang, Xianhua Lin, Yin-xiong Li
View: Text | PDF
Research Article Metabolism

Hypomorphic ASGR1 modulates lipid homeostasis via INSIG1-mediated SREBP signaling suppression

  • Text
  • PDF
Abstract

A population genetic study identified that the asialoglycoprotein receptor 1 (ASGR1) mutation carriers had substantially lower non–HDL-cholesterol (non–HDL-c) levels and reduced risks of cardiovascular diseases. However, the mechanism behind this phenomenon remained unclear. Here, we established Asgr1-knockout mice that represented a plasma lipid profile with significantly lower non–HDL-c and triglyceride (TG) caused by decreased secretion and increased uptake of VLDL/LDL. These 2 phenotypes were linked with the decreased expression of microsomal triglyceride transfer protein and proprotein convertase subtilisin/kexin type 9, 2 key targeted genes of sterol regulatory element–binding proteins (SREBPs). Furthermore, there were fewer nuclear SREBPs (nSREBPs) on account of more SREBPs being trapped in endoplasmic reticulum, which was caused by an increased expression of insulin-induced gene 1 (INSIG1), an anchor of SREBPs. Overexpression and gene knockdown interventions, in different models, were conducted to rescue the ASGR1-deficient phenotypes, and we found that INSIG1 knockdown independently reversed the ASGR1-mutated phenotypes with increased serum total cholesterol, LDL-c, TG, and liver cholesterol content accompanied by restored SREBP signaling. ASGR1 rescue experiments reduced INSIG1 and restored the SREBP network defect as manifested by improved apolipoprotein B secretion and reduced LDL uptake. Our observation demonstrated that increased INSIG1 is a critical factor responsible for ASGR1 deficiency–associated lipid profile changes and nSREBP suppression. This finding of an ASGR1/INSIG1/SREBP axis regulating lipid hemostasis may provide multiple potential targets for lipid-lowering drug development.

Authors

Yingying Xu, Jiawang Tao, Xiaorui Yu, Yuhang Wu, Yan Chen, Kai You, Jiaye Zhang, Anteneh Getachew, Tingcai Pan, Yuanqi Zhuang, Fang Yuan, Fan Yang, Xianhua Lin, Yin-xiong Li

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts