Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Recently published
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact

Submit a Letter to the Editor

IGF1R controls mechanosignaling in myofibroblasts required for pulmonary alveologenesis
Hua He, … , Cheng-Lun Na, Jeffrey A. Whitsett
Hua He, … , Cheng-Lun Na, Jeffrey A. Whitsett
Published February 16, 2021
Citation Information: JCI Insight. 2021. https://doi.org/10.1172/jci.insight.144863.
View: Text | PDF
Research In-Press Preview Pulmonology

IGF1R controls mechanosignaling in myofibroblasts required for pulmonary alveologenesis

  • Text
  • PDF
Abstract

Ventilation throughout life is dependent upon the formation of pulmonary alveoli which create an extensive surface area wherein the close apposition of respiratory epithelium and endothelial cells of the pulmonary microvascular enables efficient gas exchange. Morphogenesis of the alveoli initiates at late gestation in humans and the early postnatal period in the mouse. Alveolar septation are directed by complex signaling interactions among multiple cell types. Herein, we demonstrate that the expression of insulin-like growth factor 1 receptor (Igf1r) by a subset of pulmonary fibroblasts is required for normal alveologenesis in mice. Postnatal deletion of Igf1r caused alveolar simplification, disrupting alveolar elastin networks and extracellular matrix without altering myofibroblast differentiation or proliferation. Loss of Igf1r impaired contractile properties of lung myofibroblasts, inhibited myosin light chain (MLC) phosphorylation and mechanotransductive nuclear YAP activity. Activation of p-AKT, p-MLC and nuclear YAP in myofibroblasts was dependent on Igf1r. Pharmacologic activation of AKT enhanced MLC phosphorylation, increased YAP activation and ameliorated alveolar simplification in vivo. IGF1R controls mechanosignaling in myofibroblasts required for lung alveologenesis.

Authors

Hua He, John Snowball, Fei Sun, Cheng-Lun Na, Jeffrey A. Whitsett

×

Guidelines: The Editorial Board will only consider letters that we deem relevant and of interest to our readers. We will not post data that have not been subjected to peer review, nor will we post letters that are essentially a reiteration of another letter. We reserve the right to edit any letter for length, content, and clarity. Authors will be notified by e-mail if their letters were accepted. No appeals will be considered.

Specific requirements: All letters must be 400 words or fewer. You may enter the letter as plain text or HTML. The author's name and e-mail address are required, and will be posted with the letter. All possible conflicts of interest must be noted, even if they are not posted. If you wish to include a figure (keep in mind that non-peer-reviewed data will not be posted), please contact the editors directly at editors@the-jci.org.

This field is required
This field is required
This field is required
This field is required
This field is required

This field is required
Follow JCI Insight:
Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts