Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Proximal tubular epithelial insulin receptor mediates high-fat diet–induced kidney injury
Hak Joo Lee, Meenalakshmi M. Mariappan, Luke Norton, Terry Bakewell, Denis Feliers, Sae Byeol Oh, Andrew Donati, Cherubina S. Rubannelsonkumar, Manjeri A. Venkatachalam, Stephen E. Harris, Isabelle Rubera, Michel Tauc, Goutam Ghosh Choudhury, C. Ronald Kahn, Kumar Sharma, Ralph A. DeFronzo, Balakuntalam S. Kasinath
Hak Joo Lee, Meenalakshmi M. Mariappan, Luke Norton, Terry Bakewell, Denis Feliers, Sae Byeol Oh, Andrew Donati, Cherubina S. Rubannelsonkumar, Manjeri A. Venkatachalam, Stephen E. Harris, Isabelle Rubera, Michel Tauc, Goutam Ghosh Choudhury, C. Ronald Kahn, Kumar Sharma, Ralph A. DeFronzo, Balakuntalam S. Kasinath
View: Text | PDF
Research Article Nephrology

Proximal tubular epithelial insulin receptor mediates high-fat diet–induced kidney injury

  • Text
  • PDF
Abstract

The role of insulin receptor (IR) activated by hyperinsulinemia in obesity-induced kidney injury is not well understood. We hypothesized that activation of kidney proximal tubule epithelial IR contributes to obesity-induced kidney injury. We administered normal-fat diet (NFD) or high-fat diet (HFD) to control and kidney proximal tubule IR–knockout (KPTIRKO) mice for 4 months. Renal cortical IR expression was decreased by 60% in male and female KPTIRKO mice. Baseline serum glucose, serum creatinine, and the ratio of urinary albumin to creatinine (ACR) were similar in KPTIRKO mice compared to those of controls. On HFD, weight gain and increase in serum cholesterol were similar in control and KPTIRKO mice; blood glucose did not change. HFD increased the following parameters in the male control mice: renal cortical contents of phosphorylated IR and Akt, matrix proteins, urinary ACR, urinary kidney injury molecule-1–to-creatinine ratio, and systolic blood pressure. Renal cortical generation of hydrogen sulfide was reduced in HFD-fed male control mice. All of these parameters were ameliorated in male KPTIRKO mice. Interestingly, female mice were resistant to HFD-induced kidney injury in both genotypes. We conclude that HFD-induced kidney injury requires renal proximal tubule IR activation in male mice.

Authors

Hak Joo Lee, Meenalakshmi M. Mariappan, Luke Norton, Terry Bakewell, Denis Feliers, Sae Byeol Oh, Andrew Donati, Cherubina S. Rubannelsonkumar, Manjeri A. Venkatachalam, Stephen E. Harris, Isabelle Rubera, Michel Tauc, Goutam Ghosh Choudhury, C. Ronald Kahn, Kumar Sharma, Ralph A. DeFronzo, Balakuntalam S. Kasinath

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts