Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

CAR T cells targeting tumor endothelial marker CLEC14A inhibit tumor growth
Xiaodong Zhuang, Federica Maione, Joseph Robinson, Michael Bentley, Baksho Kaul, Katharine Whitworth, Neeraj Jumbu, Elizabeth Jinks, Jonas Bystrom, Pietro Gabriele, Elisabetta Garibaldi, Elena Delmastro, Zsuzsanna Nagy, David Gilham, Enrico Giraudo, Roy Bicknell, Steven P. Lee
Xiaodong Zhuang, Federica Maione, Joseph Robinson, Michael Bentley, Baksho Kaul, Katharine Whitworth, Neeraj Jumbu, Elizabeth Jinks, Jonas Bystrom, Pietro Gabriele, Elisabetta Garibaldi, Elena Delmastro, Zsuzsanna Nagy, David Gilham, Enrico Giraudo, Roy Bicknell, Steven P. Lee
View: Text | PDF
Research Article Immunology Oncology

CAR T cells targeting tumor endothelial marker CLEC14A inhibit tumor growth

  • Text
  • PDF
Abstract

Engineering T cells to express chimeric antigen receptors (CARs) specific for antigens on hematological cancers has yielded remarkable clinical responses, but with solid tumors, benefit has been more limited. This may reflect lack of suitable target antigens, immune evasion mechanisms in malignant cells, and/or lack of T cell infiltration into tumors. An alternative approach, to circumvent these problems, is targeting the tumor vasculature rather than the malignant cells directly. CLEC14A is a glycoprotein selectively overexpressed on the vasculature of many solid human cancers and is, therefore, of considerable interest as a target antigen. Here, we generated CARs from 2 CLEC14A-specific antibodies and expressed them in T cells. In vitro studies demonstrated that, when exposed to their target antigen, these engineered T cells proliferate, release IFN-γ, and mediate cytotoxicity. Infusing CAR engineered T cells into healthy mice showed no signs of toxicity, yet these T cells targeted tumor tissue and significantly inhibited tumor growth in 3 mouse models of cancer (Rip-Tag2, mPDAC, and Lewis lung carcinoma). Reduced tumor burden also correlated with significant loss of CLEC14A expression and reduced vascular density within malignant tissues. These data suggest the tumor vasculature can be safely and effectively targeted with CLEC14A-specific CAR T cells, offering a potent and widely applicable therapy for cancer.

Authors

Xiaodong Zhuang, Federica Maione, Joseph Robinson, Michael Bentley, Baksho Kaul, Katharine Whitworth, Neeraj Jumbu, Elizabeth Jinks, Jonas Bystrom, Pietro Gabriele, Elisabetta Garibaldi, Elena Delmastro, Zsuzsanna Nagy, David Gilham, Enrico Giraudo, Roy Bicknell, Steven P. Lee

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts