Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

IL-4Rα signaling in CD4+CD25+FoxP3+ T regulatory cells restrains airway inflammation via limiting local tissue IL-33
Jermaine Khumalo, Frank Kirstein, Sabelo Hadebe, Frank Brombacher
Jermaine Khumalo, Frank Kirstein, Sabelo Hadebe, Frank Brombacher
View: Text | PDF
Research Article Immunology

IL-4Rα signaling in CD4+CD25+FoxP3+ T regulatory cells restrains airway inflammation via limiting local tissue IL-33

  • Text
  • PDF
Abstract

Impaired tolerance to innocuous particles during allergic asthma has been linked to increased plasticity of FoxP3+ regulatory T cells (Tregs) reprogramming into pathogenic effector cells, thus exacerbating airway disease. However, failure of tolerance mechanisms is driven by Th2 inflammatory signals. Therefore, the in vivo role of canonical IL-4 receptor α (IL-4Rα) signaling, an essential driver of Th2-type airway responses to allergens, on the regulatory function of FoxP3+ Tregs in allergic asthma was explored. Here, we used transgenic Foxp3cre IL-4Rα–/lox and littermate control mice to investigate the role of IL-4 and IL-13 signaling via Tregs in house dust mite–induced (HDM-induced) allergic airway disease. We sensitized mice intratracheally on day 0, challenged them on days 6–10, and analyzed airway hyperresponsiveness (AHR), airway inflammation, mucus production, and cellular profile on day 14. In the absence of IL-4Rα responsiveness on FoxP3+ Tregs, exacerbated AHR and airway inflammation were shown in HDM-sensitized mice. Interestingly, reduced induction of FoxP3+ Tregs accompanied increased IL-33 alarmin production and type 2 innate lymphoid cell activation in the lung, exacerbating airway hyperreactivity and lung eosinophilia. Taken together, our findings indicate that IL-4Rα–unresponsive FoxP3+ Tregs result in exaggerated innate Th2-type, IL-33–dependent airway inflammation and a break in tolerance during allergic asthma.

Authors

Jermaine Khumalo, Frank Kirstein, Sabelo Hadebe, Frank Brombacher

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts