Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

MicroRNA miR-24-3p reduces DNA damage responses, apoptosis, and susceptibility to chronic obstructive pulmonary disease
Jessica Nouws, Feng Wan, Eric Finnemore, Willy Roque, So-Jin Kim, Isabel Bazan, Chuan-xing Li, C. Magnus Skold, Qile Dai, Xiting Yan, Maurizio Chioccioli, Veronique Neumeister, Clemente J. Britto, Joann Sweasy, Ranjit Bindra, Åsa M. Wheelock, Jose L. Gomez, Naftali Kaminski, Patty J. Lee, Maor Sauler
Jessica Nouws, Feng Wan, Eric Finnemore, Willy Roque, So-Jin Kim, Isabel Bazan, Chuan-xing Li, C. Magnus Skold, Qile Dai, Xiting Yan, Maurizio Chioccioli, Veronique Neumeister, Clemente J. Britto, Joann Sweasy, Ranjit Bindra, Åsa M. Wheelock, Jose L. Gomez, Naftali Kaminski, Patty J. Lee, Maor Sauler
View: Text | PDF
Research Article Pulmonology

MicroRNA miR-24-3p reduces DNA damage responses, apoptosis, and susceptibility to chronic obstructive pulmonary disease

  • Text
  • PDF
Abstract

The pathogenesis of chronic obstructive pulmonary disease (COPD) involves aberrant responses to cellular stress caused by chronic cigarette smoke (CS) exposure. However, not all smokers develop COPD and the critical mechanisms that regulate cellular stress responses to increase COPD susceptibility are not understood. Because microRNAs are well-known regulators of cellular stress responses, we evaluated microRNA expression arrays performed on distal parenchymal lung tissue samples from 172 subjects with and without COPD. We identified miR-24-3p as the microRNA that best correlated with radiographic emphysema and validated this finding in multiple cohorts. In a CS exposure mouse model, inhibition of miR-24-3p increased susceptibility to apoptosis, including alveolar type II epithelial cell apoptosis, and emphysema severity. In lung epithelial cells, miR-24-3p suppressed apoptosis through the BH3-only protein BIM and suppressed homology-directed DNA repair and the DNA repair protein BRCA1. Finally, we found BIM and BRCA1 were increased in COPD lung tissue, and BIM and BRCA1 expression inversely correlated with miR-24-3p. We concluded that miR-24-3p, a regulator of the cellular response to DNA damage, is decreased in COPD, and decreased miR-24-3p increases susceptibility to emphysema through increased BIM and apoptosis.

Authors

Jessica Nouws, Feng Wan, Eric Finnemore, Willy Roque, So-Jin Kim, Isabel Bazan, Chuan-xing Li, C. Magnus Skold, Qile Dai, Xiting Yan, Maurizio Chioccioli, Veronique Neumeister, Clemente J. Britto, Joann Sweasy, Ranjit Bindra, Åsa M. Wheelock, Jose L. Gomez, Naftali Kaminski, Patty J. Lee, Maor Sauler

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts