Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

High-dimensional analysis reveals a pathogenic role of inflammatory monocytes in experimental diffuse alveolar hemorrhage
Pui Y. Lee, … , Westley H. Reeves, Peter A. Nigrovic
Pui Y. Lee, … , Westley H. Reeves, Peter A. Nigrovic
Published August 8, 2019
Citation Information: JCI Insight. 2019;4(15):e129703. https://doi.org/10.1172/jci.insight.129703.
View: Text | PDF
Research Article Pulmonology

High-dimensional analysis reveals a pathogenic role of inflammatory monocytes in experimental diffuse alveolar hemorrhage

  • Text
  • PDF
Abstract

Diffuse alveolar hemorrhage (DAH) is a life-threatening pulmonary complication associated with systemic lupus erythematosus, vasculitis, and stem cell transplant. Little is known about the pathophysiology of DAH, and no targeted therapy is currently available. Pristane treatment in mice induces systemic autoimmunity and lung hemorrhage that recapitulates hallmark pathologic features of human DAH. Using this experimental model, we performed high-dimensional analysis of lung immune cells in DAH by mass cytometry and single-cell RNA sequencing. We found a large influx of myeloid cells to the lungs in DAH and defined the gene expression profile of infiltrating monocytes. Bone marrow–derived inflammatory monocytes actively migrated to the lungs and homed adjacent to blood vessels. Using 3 models of monocyte deficiency and complementary transfer studies, we established a central role of inflammatory monocytes in the development of DAH. We further found that the myeloid transcription factor interferon regulatory factor 8 is essential to the development of both DAH and type I interferon–dependent autoimmunity. These findings collectively reveal monocytes as a potential treatment target in DAH.

Authors

Pui Y. Lee, Nathan Nelson-Maney, Yuelong Huang, Anaïs Levescot, Qiang Wang, Kevin Wei, Pierre Cunin, Yi Li, James A. Lederer, Haoyang Zhuang, Shuhong Han, Edy Y. Kim, Westley H. Reeves, Peter A. Nigrovic

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts