Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Dual PPARα/γ activation inhibits SIRT1-PGC1α axis and causes cardiac dysfunction
Charikleia Kalliora, Ioannis D. Kyriazis, Shin-ichi Oka, Melissa J. Lieu, Yujia Yue, Estela Area-Gomez, Christine J. Pol, Ying Tian, Wataru Mizushima, Adave Chin, Diego Scerbo, P. Christian Schulze, Mete Civelek, Junichi Sadoshima, Muniswamy Madesh, Ira J. Goldberg, Konstantinos Drosatos
Charikleia Kalliora, Ioannis D. Kyriazis, Shin-ichi Oka, Melissa J. Lieu, Yujia Yue, Estela Area-Gomez, Christine J. Pol, Ying Tian, Wataru Mizushima, Adave Chin, Diego Scerbo, P. Christian Schulze, Mete Civelek, Junichi Sadoshima, Muniswamy Madesh, Ira J. Goldberg, Konstantinos Drosatos
View: Text | PDF
Research Article Metabolism

Dual PPARα/γ activation inhibits SIRT1-PGC1α axis and causes cardiac dysfunction

  • Text
  • PDF
Abstract

Dual PPARα/γ agonists that were developed to target hyperlipidemia and hyperglycemia in patients with type 2 diabetes caused cardiac dysfunction or other adverse effects. We studied the mechanisms that underlie the cardiotoxic effects of a dual PPARα/γ agonist, tesaglitazar, in wild-type and diabetic (leptin receptor–deficient, db/db) mice. Mice treated with tesaglitazar-containing chow or high-fat diet developed cardiac dysfunction despite lower plasma triglycerides and glucose levels. Expression of cardiac PPARγ coactivator 1-α (PGC1α), which promotes mitochondrial biogenesis, had the most profound reduction among various fatty acid metabolism genes. Furthermore, we observed increased acetylation of PGC1α, which suggests PGC1α inhibition and lowered sirtuin 1 (SIRT1) expression. This change was associated with lower mitochondrial abundance. Combined pharmacological activation of PPARα and PPARγ in C57BL/6 mice reproduced the reduction of PGC1α expression and mitochondrial abundance. Resveratrol-mediated SIRT1 activation attenuated tesaglitazar-induced cardiac dysfunction and corrected myocardial mitochondrial respiration in C57BL/6 and diabetic mice but not in cardiomyocyte-specific Sirt1–/– mice. Our data show that drugs that activate both PPARα and PPARγ lead to cardiac dysfunction associated with PGC1α suppression and lower mitochondrial abundance, likely due to competition between these 2 transcription factors.

Authors

Charikleia Kalliora, Ioannis D. Kyriazis, Shin-ichi Oka, Melissa J. Lieu, Yujia Yue, Estela Area-Gomez, Christine J. Pol, Ying Tian, Wataru Mizushima, Adave Chin, Diego Scerbo, P. Christian Schulze, Mete Civelek, Junichi Sadoshima, Muniswamy Madesh, Ira J. Goldberg, Konstantinos Drosatos

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts