Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Imaging mass spectrometry reveals heterogeneity of proliferation and metabolism in atherosclerosis
Christelle Guillermier, … , Matthew L. Steinhauser, Jonathan D. Brown
Christelle Guillermier, … , Matthew L. Steinhauser, Jonathan D. Brown
Published June 6, 2019
Citation Information: JCI Insight. 2019;4(11):e128528. https://doi.org/10.1172/jci.insight.128528.
View: Text | PDF
Resource and Technical Advance Vascular biology

Imaging mass spectrometry reveals heterogeneity of proliferation and metabolism in atherosclerosis

  • Text
  • PDF
Abstract

Atherosclerotic plaques feature local proliferation of leukocytes and vascular smooth muscle cells (VSMCs) and changes in cellular metabolism. Yet the relationship between glucose utilization and proliferation has been technically impossible to study directly in cells of atherosclerotic plaques in vivo. We used multi-isotope imaging mass spectrometry (MIMS), a quantitative imaging platform, to measure coincident cell division and glucose utilization at suborganelle resolution in atherosclerotic plaques. In established plaques, 65% of intimal foam cells and only 4% of medial VSMCs were labeled with 15N-thymidine after 1 week of isotope treatment. Dividing cells demonstrated heightened glucose labeling. MIMS detected 2H-glucose label in multiple subcellular compartments within foam cells, including lipid droplets, the cytosol, and chromatin. Unexpectedly, we identified an intensely focal region of 2H-label in VSMCs underlying plaques. This signal diminished in regions of aorta without atherosclerosis. In advanced plaques, 15N-thymidine and 2H-glucose labeling in foam cells and VSMCs significantly decreased. These data demonstrate marked heterogeneity in VSMC glucose metabolism that was dependent on both proliferative status and proximity of VSMCs to plaques. Furthermore, these results reveal how quantitative mass spectrometry coupled with isotope imaging can complement other methods used to study cell biology directly in the growing atherosclerotic plaque in vivo.

Authors

Christelle Guillermier, Sean P. Doherty, Adam G. Whitney, Vladimir R. Babaev, MacRae F. Linton, Matthew L. Steinhauser, Jonathan D. Brown

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts