Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Registration of the extracellular matrix components constituting the fibroblastic focus in idiopathic pulmonary fibrosis
Jeremy Herrera, … , Craig A. Henke, Peter B. Bitterman
Jeremy Herrera, … , Craig A. Henke, Peter B. Bitterman
Published January 10, 2019
Citation Information: JCI Insight. 2019;4(1):e125185. https://doi.org/10.1172/jci.insight.125185.
View: Text | PDF
Research Article Pulmonology

Registration of the extracellular matrix components constituting the fibroblastic focus in idiopathic pulmonary fibrosis

  • Text
  • PDF
Abstract

The extracellular matrix (ECM) in idiopathic pulmonary fibrosis (IPF) drives fibrosis progression; however, the ECM composition of the fibroblastic focus (the hallmark lesion in IPF) and adjacent regions remains incompletely defined. Herein, we serially sectioned IPF lung specimens constructed into tissue microarrays and immunostained for ECM components reported to be deregulated in IPF. Immunostained sections were imaged, anatomically aligned, and 3D reconstructed. The myofibroblast core of the fibroblastic focus (defined by collagen I, α-smooth muscle actin, and procollagen I immunoreactivity) was associated with collagens III, IV, V, and VI; fibronectin; hyaluronan; and versican immunoreactivity. Hyaluronan immunoreactivity was also present at the fibroblastic focus perimeter and at sites where early lesions appear to be forming. Fibrinogen immunoreactivity was often observed at regions of damaged epithelium lining the airspace and the perimeter of the myofibroblast core but was absent from the myofibroblast core itself. The ECM components of the fibroblastic focus were distributed in a characteristic and reproducible manner in multiple patients. This information can inform the development of high-fidelity model systems to dissect mechanisms by which the IPF ECM drives fibrosis progression.

Authors

Jeremy Herrera, Colleen Forster, Thomas Pengo, Angeles Montero, Joe Swift, Martin A. Schwartz, Craig A. Henke, Peter B. Bitterman

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts