Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

KCNQ/M-channels regulate mouse vagal bronchopulmonary C-fiber excitability and cough sensitivity
Hui Sun, An-Hsuan Lin, Fei Ru, Mayur J. Patil, Sonya Meeker, Lu-Yuan Lee, Bradley J. Undem
Hui Sun, An-Hsuan Lin, Fei Ru, Mayur J. Patil, Sonya Meeker, Lu-Yuan Lee, Bradley J. Undem
View: Text | PDF
Research Article Pulmonology

KCNQ/M-channels regulate mouse vagal bronchopulmonary C-fiber excitability and cough sensitivity

  • Text
  • PDF
Abstract

Increased airway vagal sensory C-fiber activity contributes to the symptoms of inflammatory airway diseases. The KCNQ/Kv7/M-channel is a well-known determinant of neuronal excitability, yet whether it regulates the activity of vagal bronchopulmonary C-fibers and airway reflex sensitivity remains unknown. Here we addressed this issue using single-cell RT-PCR, patch clamp technique, extracellular recording of single vagal nerve fibers innervating the mouse lungs, and telemetric recording of cough in free-moving mice. Single-cell mRNA analysis and biophysical properties of M-current (IM) suggest that KCNQ3/Kv7.3 is the major M-channel subunit in mouse nodose neurons. The M-channel opener retigabine negatively shifted the voltage-dependent activation of IM, leading to membrane hyperpolarization, increased rheobase, and suppression of both evoked and spontaneous action potential (AP) firing in nodose neurons in an M-channel inhibitor XE991–sensitive manner. Retigabine also markedly suppressed the α,β-methylene ATP–induced AP firing in nodose C-fiber terminals innervating the mouse lungs, and coughing evoked by irritant gases in awake mice. In conclusion, KCNQ/M-channels play a role in regulating the excitability of vagal airway C-fibers at both the cell soma and nerve terminals. Drugs that open M-channels in airway sensory afferents may relieve the sufferings associated with pulmonary inflammatory diseases such as chronic coughing.

Authors

Hui Sun, An-Hsuan Lin, Fei Ru, Mayur J. Patil, Sonya Meeker, Lu-Yuan Lee, Bradley J. Undem

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts