Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Magnesium supplementation improves diabetic mitochondrial and cardiac diastolic function
Man Liu, … , Anyu Zhou, Samuel C. Dudley Jr.
Man Liu, … , Anyu Zhou, Samuel C. Dudley Jr.
Published January 10, 2019
Citation Information: JCI Insight. 2019;4(1):e123182. https://doi.org/10.1172/jci.insight.123182.
View: Text | PDF
Research Article Cardiology

Magnesium supplementation improves diabetic mitochondrial and cardiac diastolic function

  • Text
  • PDF
Abstract

In heart failure and type 2 diabetes mellitus (DM), the majority of patients have hypomagnesemia, and magnesium (Mg) supplementation has improved cardiac function and insulin resistance. Recently, we have shown that DM can cause cardiac diastolic dysfunction (DD). Therefore, we hypothesized that Mg supplementation would improve diastolic function in DM. High-fat diet–induced diabetic mouse hearts showed increased cardiac DD and hypertrophy. Mice with DM showed a significantly increased E/e’ ratio (the ratio of transmitral Doppler early filling velocity [E] to tissue Doppler early diastolic mitral annular velocity [e’]) in the echocardiogram, left ventricular end diastolic volume (LVEDV), incidence of DD, left ventricular posterior wall thickness in diastole (PWTd), and ratio of heart weight to tibia length (HW/TL) when compared with controls. DM mice also had hypomagnesemia. Ventricular cardiomyocytes isolated from DM mice exhibited decreased mitochondrial ATP production, a 1.7- ± 0.2-fold increase of mitochondrial ROS, depolarization of the mitochondrial membrane potential, and mitochondrial Ca2+ overload. Dietary Mg administration (50 mg/ml in the drinking water) for 6 weeks increased plasma Mg concentration and improved cardiac function. At the cellular level, Mg improved mitochondrial function with increased ATP, decreased mitochondrial ROS and Ca2+ overload, and repolarized mitochondrial membrane potential. In conclusion, Mg supplementation improved mitochondrial function, reduced oxidative stress, and prevented DD in DM.

Authors

Man Liu, Euy-Myoung Jeong, Hong Liu, An Xie, Eui Young So, Guangbin Shi, Go Eun Jeong, Anyu Zhou, Samuel C. Dudley Jr.

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts