Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Divergent effects of resistance and endurance exercise on plasma bile acids, FGF19, and FGF21 in humans
Thomas Morville, … , Jørn W. Helge, Christoffer Clemmensen
Thomas Morville, … , Jørn W. Helge, Christoffer Clemmensen
Published August 9, 2018
Citation Information: JCI Insight. 2018;3(15):e122737. https://doi.org/10.1172/jci.insight.122737.
View: Text | PDF
Clinical Research and Public Health Endocrinology Metabolism

Divergent effects of resistance and endurance exercise on plasma bile acids, FGF19, and FGF21 in humans

  • Text
  • PDF
Abstract

BACKGROUND. Exercise has profound pleiotropic health benefits, yet the underlying mechanisms remain incompletely understood. Endocrine FGF21, bile acids (BAs), and BA-induced FGF19 have emerged as metabolic signaling molecules. Here, we investigated if dissimilar modes of exercise, resistance exercise (RE) and endurance exercise (EE), regulate plasma BAs, FGF19, and FGF21 in humans. METHODS. Ten healthy, moderately trained males were enrolled in a randomized crossover study of 1 hour of bicycling at 70% of VO2peak (EE) and 1 hour of high-volume RE. Hormones and metabolites were measured in venous blood and sampled before and after exercise and at 15, 30, 60, 90, 120, and 180 minutes after exercise. RESULTS. We observed exercise mode–specific changes in plasma concentrations of FGF19 and FGF21. Whereas FGF19 decreased following RE (P < 0.001), FGF21 increased in response to EE (P < 0.001). Total plasma BAs decreased exclusively following RE (P < 0.05), but the composition of BAs changed in response to both types of exercise. Notably, circulating levels of the potent TGR5 receptor agonist, lithocholic acid, increased with both types of exercise (P < 0.001). CONCLUSION. This study reveals divergent effects of EE and RE on circulating concentrations of the BA species, FGF19, and FGF21. We identify temporal relationships between decreased BA and FGF19 following RE and a sharp disparity in FGF21 concentrations, with EE eliciting a clear increase parallel to that of glucagon. FUNDING. The Novo Nordisk Foundation (NNF17OC0026114) and the Lundbeck Foundation (R238-2016-2859).

Authors

Thomas Morville, Ronni E. Sahl, Samuel A.J. Trammell, Jens S. Svenningsen, Matthew P. Gillum, Jørn W. Helge, Christoffer Clemmensen

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts