Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Localized hypoxia links ER stress to lung fibrosis through induction of C/EBP homologous protein
Ankita Burman, Jonathan A. Kropski, Carla L. Calvi, Ana P. Serezani, Bruno D. Pascoalino, Wei Han, Taylor Sherrill, Linda Gleaves, William E. Lawson, Lisa R. Young, Timothy S. Blackwell, Harikrishna Tanjore
Ankita Burman, Jonathan A. Kropski, Carla L. Calvi, Ana P. Serezani, Bruno D. Pascoalino, Wei Han, Taylor Sherrill, Linda Gleaves, William E. Lawson, Lisa R. Young, Timothy S. Blackwell, Harikrishna Tanjore
View: Text | PDF
Research Article Pulmonology

Localized hypoxia links ER stress to lung fibrosis through induction of C/EBP homologous protein

  • Text
  • PDF
Abstract

ER stress in type II alveolar epithelial cells (AECs) is common in idiopathic pulmonary fibrosis (IPF), but the contribution of ER stress to lung fibrosis is poorly understood. We found that mice deficient in C/EBP homologous protein (CHOP), an ER stress–regulated transcription factor, were protected from lung fibrosis and AEC apoptosis in 3 separate models where substantial ER stress was identified. In mice treated with repetitive intratracheal bleomycin, we identified localized hypoxia in type II AECs as a potential mechanism explaining ER stress. To test the role of hypoxia in lung fibrosis, we treated mice with bleomycin, followed by exposure to 14% O2, which exacerbated ER stress and lung fibrosis. Under these experimental conditions, CHOP–/– mice, but not mice with epithelial HIF (HIF1/HIF2) deletion, were protected from AEC apoptosis and fibrosis. In vitro studies revealed that CHOP regulates hypoxia-induced apoptosis in AECs via the inositol-requiring enzyme 1α (IRE1α) and the PKR-like ER kinase (PERK) pathways. In human IPF lungs, CHOP and hypoxia markers were both upregulated in type II AECs, supporting a conclusion that localized hypoxia results in ER stress–induced CHOP expression, thereby augmenting type II AEC apoptosis and potentiating lung fibrosis.

Authors

Ankita Burman, Jonathan A. Kropski, Carla L. Calvi, Ana P. Serezani, Bruno D. Pascoalino, Wei Han, Taylor Sherrill, Linda Gleaves, William E. Lawson, Lisa R. Young, Timothy S. Blackwell, Harikrishna Tanjore

×
Options: View larger image (or click on image) Download as PowerPoint
Genes in the Mouse Apoptosis RT2 Profiler PCR Array that were differenti...

Genes in the Mouse Apoptosis RT2 Profiler PCR Array that were differentially regulated by CHOP siRNA treatment and confirmed by individual qPCR


Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts