Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

PAN-AMPK activator O304 improves glucose homeostasis and microvascular perfusion in mice and type 2 diabetes patients
Pär Steneberg, Emma Lindahl, Ulf Dahl, Emmelie Lidh, Jurate Straseviciene, Fredrik Backlund, Elisabet Kjellkvist, Eva Berggren, Ingela Lundberg, Ingela Bergqvist, Madelene Ericsson, Björn Eriksson, Kajsa Linde, Jacob Westman, Thomas Edlund, Helena Edlund
Pär Steneberg, Emma Lindahl, Ulf Dahl, Emmelie Lidh, Jurate Straseviciene, Fredrik Backlund, Elisabet Kjellkvist, Eva Berggren, Ingela Lundberg, Ingela Bergqvist, Madelene Ericsson, Björn Eriksson, Kajsa Linde, Jacob Westman, Thomas Edlund, Helena Edlund
View: Text | PDF
Research Article Metabolism

PAN-AMPK activator O304 improves glucose homeostasis and microvascular perfusion in mice and type 2 diabetes patients

  • Text
  • PDF
Abstract

AMPK activated protein kinase (AMPK), a master regulator of energy homeostasis, is activated in response to an energy shortage imposed by physical activity and caloric restriction. We here report on the identification of PAN-AMPK activator O304, which — in diet-induced obese mice — increased glucose uptake in skeletal muscle, reduced β cell stress, and promoted β cell rest. Accordingly, O304 reduced fasting plasma glucose levels and homeostasis model assessment of insulin resistance (HOMA-IR) in a proof-of-concept phase IIa clinical trial in type 2 diabetes (T2D) patients on Metformin. T2D is associated with devastating micro- and macrovascular complications, and O304 improved peripheral microvascular perfusion and reduced blood pressure both in animals and T2D patients. Moreover, like exercise, O304 activated AMPK in the heart, increased cardiac glucose uptake, reduced cardiac glycogen levels, and improved left ventricular stroke volume in mice, but it did not increase heart weight in mice or rats. Thus, O304 exhibits a great potential as a novel drug to treat T2D and associated cardiovascular complications.

Authors

Pär Steneberg, Emma Lindahl, Ulf Dahl, Emmelie Lidh, Jurate Straseviciene, Fredrik Backlund, Elisabet Kjellkvist, Eva Berggren, Ingela Lundberg, Ingela Bergqvist, Madelene Ericsson, Björn Eriksson, Kajsa Linde, Jacob Westman, Thomas Edlund, Helena Edlund

×

Usage data is cumulative from February 2025 through February 2026.

Usage JCI PMC
Text version 2,278 549
PDF 191 68
Figure 767 4
Table 59 0
Supplemental data 250 55
Citation downloads 180 0
Totals 3,725 676
Total Views 4,401
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts